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Abstract. We numerically investigate, within the context of helical symmetry, the

dynamics of a regular array of two or three helical vortices with or without a straight

central hub vortex. The Navier-Stokes equations are linearised to study the instabilities

of such basic states. For vortices with low pitches, an unstable mode is extracted which

corresponds to a displacement mode and growth rates are found to compare well with

results valid for an infinite row of point vortices or an infinite alley of vortex rings. For

larger pitches, the system is stable with respect to helically symmetric perturbations.

In the nonlinear regime, we follow the time-evolution of the above basic states when

initially perturbed by the dominant instability mode. For two vortices, sequences of

overtaking events, leapfrogging and eventually merging are observed. The transition

between such behaviours occurs at a critical ratio involving the core size and the

vortex-separation distance. Cases with three helical vortices are also presented.
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1. Introduction

Helical vortices are encountered in nature and numerous industrial applications. For

instance, vortices characterized by a helical geometry are shed downstream of rotating

blades. Such flows are the simplest prototypes in which combined effects of torsion

and curvature are present. While vortices can still be geometrically described as

vorticity tubes, their global motions resulting from the mutual vortex interactions

are highly complex. In the past decades, a lot of efforts has been devoted to the

understanding and prediction of such dynamics. Most theoretical studies used an

idealised formulation: helical vortices were modelled as inviscid filaments in which the

vorticity field was represented by thin curved tubes, the main problem being to deal with

their singular behaviour. Among these works, some were devoted to finding equilibrium

solutions and, more precisely, to characterize their angular velocity and the induced

velocity [1, 2, 3, 4, 5, 6]. A few studies directly used the Euler equations to compute

equilibria. In particular, Lucas and Dritschel [7] exhibited a family of equilibria with

arbitrary core size using helically symmetric Euler equations. By imposing geometrical

constraints on the centroid location and the vortex core size at fixed pitch, their approach

managed to find helical patch solutions which were steady in some rotating frame.

The study of instabilities developing in such vortex systems was the focus of many works,

mainly in the framework of the vortex-filament approach [8, 9, 10, 11, 12, 13]. Widnall [8]

first predicted the linear stability features of one helical vortex with respect to sinusoidal

perturbations. Three types of instability modes were found: a long wavelength mode,

a mutual-inductance mode and a short wavelength mode. Gupta and Loewy [9] later

extended this work to a regular array of helical vortices: modes analogous to those

obtained for one single vortex were found, as well as additional modes arising from the

interaction between distinct vortices. Okulov [10] focused specifically on the helically

symmetric modes in an array of N vortices with circular cores. It was shown that such

systems were unstable when the helical pitch was smaller than a threshold value. Later,

Okulov and Sørensen [11] investigated the effect of a central hub vortex, as in rotor

wakes: the central hub was always destabilizing.

Helical vortices were also experimentally studied. For instance, Felli et al.[14] studied

the spatial development of marine propeller wakes for two to four blades: the growth

of perturbations led to vortex groupings and eventually dissipation of the coherent

structures. This study revealed the presence, at the axis, of the hub vortex playing a

role on the instability process. Bolnot et al. [15, 16], and Quaranta et al. [17] used a

water channel in which one- and two-bladed rotors generated carefully monitored helical

wakes. Instability modes were forced by modulating the rotor angular velocity or by a

small asymmetry between the two blades. The temporal growth rates measured as a

function of the imposed wavelength were found to agree with the filamentary theory.

In experiments, it is difficult though to cover large ranges of helical pitches, core sizes

and Reynolds numbers. This can be performed more easily using a numerical approach.

Performing a parametric study in order to find the stability thresholds is one goal of the



Helical vortices: linear stability analysis and nonlinear dynamics 3

present numerical work. Concerning basic flows, existing results in the inviscid domain

are mainly obtained via vortex filaments which approximate the Euler dynamics. The

present approach extends the semi-analytical studies to the viscous framework and gives

access to the velocity structure inside vortex cores. For linear instability, the results we

obtain are shown below to be close to vortex filament theory. This analysis permits to

reach the inner structure of the unstable modes though it remains simple here. More

importantly, it computes the nonlinear evolution within the helical framework. Indeed

our approach introduces diffusion which is important in the nonlinear evolution towards

merging, as it is for two-dimensional vortex pairing.

This article focuses on vortices with imposed helical symmetry. Thanks to this

invariance, the problem is reduced to a two-dimensional one still preserving fundamental

three-dimensional effects (curvature and torsion). This simplification allows for

simulations at higher Reynolds numbers than in a complete three-dimensional

simulation. Such an approach filters out ingredients such as wake spatial development,

fluid-rotor interaction and turbulence. On the contrary it focuses on the fundamental

physical mechanisms (induction and diffusion). A numerical code called HELIX has

been developed at LIMSI-CNRS and d’Alembert-UPMC [18] to implement the helical

formulation of the incompressible Navier-Stokes equations: it is quasi-two dimensional,

based on pseudo-spectral and finite-difference methods along the azimuthal and radial

directions, respectively. This code is used to determine basic states with prescribed

characteristics (core size, helical pitch, helix radius). A linearised version of this code

coupled to an Arnoldi algorithm enables one to perform the linear stability analysis and

to extract dominant modes. The nonlinear evolutions of such modes are then computed

within the helical framework.

2. Helical framework and governing equations

Linear and nonlinear instabilities of jets, wakes or boundary layers, are often studied in

the framework of a parallel flow approximation. A similar local hypothesis can be used

for rotor wakes: the base flow may be assumed to satisfy helical symmetry. A flow is

helically symmetric if it remains invariant through the combined action of a translation

of arbitrary magnitude H along a given axis and of a rotation of angle θs = H/L around

the same axis (see figure 1-a) where 2πL is the helix pitch. The sign of L defines the

direction of the helix: L > 0 corresponds to a right-handed helix and L < 0 to a

left-handed one.

In the context of helical symmetry, it is convenient to introduce variable ϕ = θ − z/L
and a new orthonormal basis (eB, er, eϕ) based on the standard cylindrical basis

(er, eθ, ez) (see figure 1-b). The Beltrami vector eB is a unit vector locally tangent

to the helical lines ϕ = cst:

eB = α (r)
(
ez +

r

L
eθ

)
with α(r) =

(
1 +

r2

L2

)−1/2
. (1)
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ϕ ≡ θ − z/L = cst
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2πL
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Figure 1: (a) Geometrical parameters defining helical symmetry. (b) Local orthonormal

helical basis (er, eB, eϕ).

The third unit vector eϕ is given by

eϕ = eB × er = α (r)
(
eθ −

z

L
ez

)
. (2)

Consequently, any velocity field can be expressed as u = ur er + uB eB + uϕ eϕ with

uB (r, θ, z) = u · eB = α(r)
(
uz +

r

L
uθ

)
(3)

uϕ (r, θ, z) = u · eϕ = α(r)
(
uθ −

r

L
uz

)
. (4)

For helically symmetric flows, components ur, uB, uϕ are constant along the helical lines

eB ·∇ur = eB ·∇uB = eB ·∇uϕ = 0, (5)

or equivalently, they depend on only two variables (r, ϕ). A helically symmetric velocity

field u is thus given by

u = ur (r, ϕ, t) er (θ) + uB (r, ϕ, t) eB (r, θ) + uϕ (r, ϕ, t) eϕ (r, θ) . (6)

For incompressible and helically symmetric flows, the divergenceless character of both

velocity and vorticity is automatically ensured by introducing the helical components

of velocity uB (r, ϕ, t) and vorticity ωB (r, ϕ, t) as well as the streamfunction Ψ (r, ϕ, t)

so that

u(r, ϕ, t) = uB(r, ϕ, t) eB + α(r)∇Ψ(r, ϕ, t)× eB, (7)

ω(r, ϕ, t) = ωB(r, ϕ, t) eB + α(r)∇
(
uB(r, ϕ, t)

α

)
× eB. (8)

In addition, fields uB, ωB and Ψ are related via a generalised Ψ− ωB relationship:

ωB = −LΨ + 2
α2

L
uB (9)



Helical vortices: linear stability analysis and nonlinear dynamics 5

where L stands for the modified Laplace operator:

L (.) ≡ 1

rα

∂

∂r

(
rα2 ∂

∂r
(.)

)
+

1

r2α

∂2

∂ϕ2
(.) . (10)

In this representation, the dynamics is fully described by two equations coupling uB and

ωB:

∂

∂t
uB +NLu = VT u (11)

∂

∂t
ωB +NLω = VT ω (12)

The nonlinear terms are given by

NLu ≡ eB · (ω × u) , (13)

NLω ≡ eB ·∇× (ω × u) , (14)

=
1

rα

{
∂

∂r
(rαgϕ)− ∂

∂ϕ
gr

}
+

2α2

L
gB +

α

L2

∂

∂ϕ

(
u2B
)

with

gϕ = ωB ur, gr = −ωB uϕ, gB = ωr uϕ − ωϕ ur,
and the viscous terms

VT u ≡ ν

[
L
(uB

α

)
− 2α2

L
ωB

]
, (15)

VT ω ≡ −ν eB ·∇× [∇× ω] (16)

= ν

[
L
(ωB

α

)
−
(

2α2

L

)2

ωB

]
+ ν

2α2

L
L
(uB

α

)
.

For L→ ±∞, helical lines tend toward straight lines and the above equations becomes

the usual Ψ − ω formulation. When L 6= ∞, this usual dynamic is generalised and in

particular, the components uB and ωB are coupled through the viscous terms VT u and

VT ω.

The numerical code that implements the time advance of equations (11)–(12) is briefly

described below, an extensive description can be found in Delbende et al. [18]. Quantities

are represented as functions of r and ϕ. The code uses second order finite differences in

the radial direction, and a decomposition over Fourier modes along the 2π-periodic

direction ϕ. The time advance uses a second-order backward discretisation of the

temporal derivative. Viscous terms are treated in a fully implicit manner while nonlinear

terms are kept explicit through a second order Adams–Bashforth extrapolation. At each

time step, these nonlinear terms are evaluated in physical space on a grid of nr points

along the radial direction by nϕ points along the azimuth, and are then transformed to

the spectral space where a standard 2/3 dealiasing procedure is applied. The numerical

domain has a typical radial extension of a few helix radii. It thus encompasses the

vorticity region, so that the matching of solutions to the potential field assumed to

prevail outside the domain is enforced at the outer boundary. Moreover, a condition of

zero axial velocity is imposed as r → ∞: this selects a specific reference frame which

might differ from the laboratory frame in experiments.
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(a) (b)

Figure 2: Two helical vortices of reduced pitch L = 0.3 with core size ab = 0.09 (a)

vorticity field ωB in the plane orthogonal to the z−axis (b) Iso-vorticity surface in three-

dimensional space.

3. Linear stability analysis

3.1. Basic states solutions: frozen quasi-equilibria

The stability of a regular array of N identical helical vortices of circulation Γ is here

studied in the presence or absence of a straight hub vortex of circulation −NΓ along the

z−axis (this last configuration is akin to that of rotor wakes). In the framework of Euler

dynamics, such systems would correspond to steadily rotating equilibrium states. When

viscosity is present, equilibrium cannot be maintained but there exist unsteady solutions

which evolve in such a way that the system remains close to such inviscid equilibria.

These unsteady solutions are called quasi-equilibria: their core size a (t), angular velocity

Ω (t) and helix radius rA (t) are slowly changing in time. Quasi-equilibria are obtained

by DNS starting from initial conditions which are close to singular helical filaments:

after a short transient, Kelvin waves are damped and the system reaches such a basic

state. These features are detailed elsewhere [19, 20]. Figure 2 illustrates such a state

for an array of two vortices.

The stability analyses presented here below are performed around a basic state

corresponding to a quasi-equilibrium solution at a given time tb. This state is defined by

velocity u(tb) and vorticity ω(tb) in steady rotation at angular velocity Ω (tb). As it is

usually done in shear flow at high Reynolds numbers, the instability study of this frozen

flow is pertinent since the perturbations are expected to grow faster than the timescale

characterizing the action of viscous diffusion on a quasi-equilibrium. Note that this

approximation is mandatory in order to use standard temporal stability techniques: in

the reference frame rotating with the vortices at rate Ω(tb), the basic state becomes
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indeed steady and helical components are changed as follows:

uRB = uB −
r2

L
αΩ(tb), (17)

uRϕ = uϕ − rαΩ(tb), (18)

ωRB = ωB − 2αΩ(tb), (19)

ωRϕ = ωϕ +
2r

L
αΩ(tb). (20)

In the following discussion, all quantities are made dimensionless using R ≡ rA (tb) as

a characteristic length scale and R2/Γ as a characteristic time scale. The Reynolds

number is thus defined as Re = Γ/ν. In dimensionless units, the numerical domain is

generally the disk r ≤ 3 and is meshed using nr ×nφ = 512× 384 grid points which has

been checked to ensure convergence. Typical time step at Re = 104 is δt = 10−4. These

values are used to compute the basic flow. The same discretisation parameters are used

below for the stability equations (21)–(23) as well.

3.2. Linear stability equations

In the present paper, we restrict the general stability problem and focus on helically

symmetric perturbations only. The viscous diffusion acts on the perturbations although

we have neglected its action on the basic state. This is coherent with the frozen flow

approximation. In the framework of helical symmetry, let us present the linearisation

of equations (11) and (12). When written in the rotating frame of reference, a Coriolis

force appears in the dynamical equations. The velocity perturbation u′B satisfy

∂

∂t
u′B + ωRr u

′
ϕ + uRϕω

′
r − (ωRϕu

′
r + uRr ω

′
ϕ) +

2Ω

L
αru′r

= ν

[
L
(
u′B
α

)
− 2

α2

L
ω′B

]
, (21)

while vorticity perturbation ω′B is governed by

∂

∂t
ω′B +

1

rα

∂

∂r

(
rα
(
ωRBu

′
r + uRr ω

′
B

))
+

1

rα

∂

∂ϕ

(
ωRBu

′
ϕ + uRϕω

′
B

)
+

2α2

L

[
ωRr u

′
ϕ + uRϕω

′
r −

(
ωRϕu

′
r + uRr ω

′
ϕ

)]
+

α

L2

∂

∂ϕ

(
2uRBu

′
B

)
+

2Ω

L

∂u′B
∂ϕ

= ν

[
L
(
ω′B
α

)
−
(

2
α2

L

)2

ω′B

]
+ ν

2α2

L
L
(
u′B
α

)
. (22)

Following equation (10), streamfunction perturbation Ψ′ is linked to ω′B and u′B via:

LΨ′ = 2
α2

L
u′B − ω′B. (23)

The spatial discretisation of this system leads to

∂

∂t
q′ = A q′ with q′ = (u′B , ω

′
B)T (24)

where A is a linear matrix of size 2np × 2np, with np = nr × nϕ. Stability

features are extracted by an Arnoldi algorithm providing the leading eigenvalues λ



Helical vortices: linear stability analysis and nonlinear dynamics 8

(a) (b)

Figure 3: (a) Spectrum in the (ω/2π, σ) plane for a single helical vortex with reduced

pitch L = 0.3 and core size a = 0.09 at Re = 10000. The 50 dominant eigenvalues

are displayed. (b) Mode structure of the mode represented with a red dot in graph (a):

contours of the real part of ω̂B in the plane orthogonal to the z−axis.

of A along with their associated eigenvectors vA. This method generates accurate

eigenvalue approximations from an upper Hessenberg factorisation of the operator A

[21, 22, 23]. The eigenvectors vA = (ω̃B, ũB)T contain a mix of helical vorticity and

velocity components and are obtained up to a complex factor. In order to define these

eigenvectors in a unique fashion, we search for the point (r+, ϕ+) where the maximum of

vorticity ω̃B is reached, and a normalisation is performed by applying ω̂B =
ω̃B

ω̃B (r+, ϕ+)
,

ûB =
ũB

ω̃B (r+, ϕ+)
.

3.3. Linear stability: results for one helical vortex

We present the spectrum and neutral mode found in the stability of a single helical

vortex. In figure 3-a, the stability spectrum is plotted for a single helical vortex for

L = 0.3, a = 0.09 and Re = 10000 where only the 50 eigenvalues of largest growth

rate are displayed. All modes have negative eigenvalues except one. This latter mode

possesses several features: (i) it possesses a small positive real eigenvalue; (ii) the

imaginary part of the associated eigenmode ω̂B is zero; (iii) the real part of ω̂B (see figure

3-b) is characterised by two lobes of opposite sign vorticity. When superimposed on the

base flow, this mode induces a displacement of the whole structure in the azimuthal

direction. Such a mode is present because of the invariance of the base flow with respect

to rotation around the central axis. For this reason, it is also expected to be neutral and

steady (σ + iω = 0). The Arnoldi procedure and more generally the finite numerical

precision cannot lead to a perfect zero eigenvalue in this case: the very small growth
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Figure 4: Spectrum in the (ω/2π, σ) plane for two helical vortices with L = 0.3 and

a = 0.09 at Re = 10000. The first 50 eigenvalues are displayed. The dominant

eigenmode is represented in blue and the neutral one in red.

rate (of order 10−2) obtained here thus quantifies the accuracy of our results. In the

framework of helical symmetry, one helical vortex is stable and the neutral displacement

mode does not play a role.

4. Linear stability results for two helical vortices

Figure 4 displays the 50 most unstable eigenvalues for two helical vortices with L = 0.3,

a = 0.09 and Re = 10000. A similar spectrum is obtained when parameters L, a and

Re are varied. Only two modes with positive growth rates emerge: one dominant mode

with growth rate σ = 0.925 as well as a marginally stable mode evaluated at σ = 0.010,

both modes being stationary (ω = 0). Similarly to the single vortex case, the latter

mode is the neutral mode (see figure 5). In figure 6-a, the real pat of the unstable mode

is represented, the associated imaginary part being zero. The mode is characterised

by two lobes of opposite sign vorticity. This implies a radial inward displacement for

one vortex and an outward one for its companion (see figure 6-a and the arrows in the

three-dimensional representation on figure 6-b). This induced vortex motion has also an

axial component. This mode structure, when visualized in the meridional (r, z) plane,

is similar to a pairing instability mode arising in a row of identical two-dimensional

vortices as sketched in figure 6-c.

The growth rate σ of the most unstable mode is presented as a function of L for core

size a = 0.09 on figure 7-a: the growth rate decreases as L increases. Because of the

numerical accuracy limitation mentioned above, the spectrum contains always a positive

growth rate. However, there exist a value of L for which the numerically estimated
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(a) (b)

Figure 5: Neutral mode for two helical vortices at L = 0.3, a = 0.09 and Re = 10000

(red circle in figure 4). (a) Contours of the real part of ω̂B in the plane orthogonal to the

z−axis. (b) Three-dimensional iso-surface of vorticity corresponding to ±max<{ω̂B}/4
(red for positive and blue for negative values).

(a) (b) (c)

Figure 6: The most unstable mode for two helical vortices at L = 0.3, a = 0.09 and

Re = 10000. (a) Contours of the real part of ω̂B in the plane orthogonal to the z−axis.

(b) Three-dimensional iso-surface of vorticity corresponding to ±max<{ω̂B}/4 (red

for positive and blue for negative values). Arrows indicate the displacement induced

by the mode: one vortex goes inwards while the other goes outwards. (c) Schematic

representation in the meridional (r, z) plane: the structure is analogous to a pairing

instability mode for an infinite row of point vortices.
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Figure 7: Most unstable instability mode for two helical vortices with a = 0.09,

Re = 10000. (a) Maximum growth rate σ(L). (b) Normalized growth rate σ̄(L) (see

equation (25)). (c) Normalized growth rate σ̄d(L) (see equation (27)).

maximum growth rate equals the value obtained for the neutral mode. This value

L ∼ 1.6 can be considered as the stability threshold. In the inviscid framework, Okulov

& Sørensen [11] predicted that two helical Rankine vortices are unstable for L < 1.106.

For the present configuration, a higher threshold is found. This difference could be

attributed to the nature of the underlying vorticity profile (it is nearly Gaussian) and

to the finite Reynolds number effect.

4.1. Point vortex and vortex ring analogies for two helical vortices

In this section, we go back to dimensional quantities for the sake of clarity. When

visualised in the meridional plane (figure 6-c), the instability mode looks very similar

to the unstable mode of an infinite row of point vortices separated by an axial distance

h = 2πL/N with N = 2, i.e. from the distance between two successive patterns in

figure 6-c. More quantitatively, we compare following [15], the growth rates computed for

helical configurations to the values for an infinite array of two-dimensional point vortices.

The maximum growth rate of such an array [24, 25] is equal to σ2D(hp) = Γπ/4h2p where

Γ and hp respectively stand for the circulation and separation of point vortices. One

may tentatively compare growth rates obtained for helical vortices to those obtained for

point vortices separated by a distance hp = h:

σ̄(L) ≡ σ(L)

σ2D(h)
= 16

πL2σ(L)

ΓN2
, (25)

Figure 7-b depicts the normalised growth rate σ̄(L) for core size a/R = 0.09 as a

function of L. For small values of L, it tends towards unity indicating that the instability

mechanism is similar to the pairing of point vortices. For increasing L, σ̄ exceeds one,

which would imply an enhancement of instability compared to the point vortex array

instability. However, this is rather due to the choice of h as the separating length hp
between point vortices. Indeed, following Quaranta et al. [17], unwrapping the successive
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d

h

Rθ

z

2πR

2πL

α

Figure 8: Schematic representation of the shortest length d between two successive coils

for two helical vortices.

coils in a (z, Rθ)-plane as depicted in figure 8 reveals the shortest length between two

successive coils to be

d = h sinα =
2πL

N

R

(L2 +R2)1/2
(26)

rather than h. Using hp = d instead of hp = h leads to a different normalized growth

rate

σ̄d(L) =
σ(L)

σ2D(d)
= σ̄(L)

R2

L2 +R2
(27)

plotted in figure 7-c for a/R = 0.09. In that case, growth rate σ̄d(L) monotonically

decreases when L increases tending to one as L goes to zero. This indicates no peculiar

instability enhancement. In addition, stabilisation is expected as L increases since the

system tends towards two point vortices.

Growth rates may also be compared to those obtained in the case of an infinite array

of vortex rings of circulation Γ, radius R separated by an axial distance h. Using a

filament approach [26], the maximum growth rate σRing of the pairing instability for

uniform vorticity ring arrays, was found to be

σRing =
Γ

2πR2

√
C (G+ C/2−B +H0) (28)

with

B =
∞∑
p=1

α3
2p−1

2

[(
3 + β2

2p−1
)
E
(
α2
2p−1

)
−K

(
α2
2p−1

)]
, (29)

C =
∞∑
p=1

α3
2p−1

[(
1− β2

2p−1
)
E
(
α2
2p−1

)
−K

(
α2
2p−1

)]
, (30)
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G =
∞∑
p=1

α3
2p

[
2E
(
α2
2p

)
−K

(
α2
2p

)]
, (31)

αk =

[
1 +

(
kh

2R

)2
]−1/2

, βk =
2R

kh
. (32)

The functions K and E are the complete elliptic integrals of the first and second kind,

respectively [27]. The last term

H0 =
1

2

(
7

4
− ln

8R

ae

)
(33)

is associated to the self-induced velocity of a single ring with uniform vorticity i.e. a

Rankine profile of core size ae. The above formulae were extended by [16] for vortex

rings with arbitrary vorticity profiles. Indeed it is known [28] that equation (33) can be

used for arbitrary vorticity profiles if one defines an equivalent core size ae. The vorticity

profile in such helical vortices is close to a Gaussian [20] of size a: the equivalent core

size is then ae ≈ 1.36a [16].

Going back from now on to dimensionless quantities, growth rates σ can be directly

compared to those obtained for vortex rings separated by a distance h = 2πL/N (see

figure 9-a) or indirectly by plotting the normalized growth rate σ/σring(d) (see figures

9-b). For pitch values L < 0.4, growth rates obtained for vortex rings and two helical

vortices are very similar. A deviation is observed for L > 0.4. For larger L, whatever

the core size a investigated, the growth rate monotonically decreases.

4.2. Influence of the core size a and Reynolds number

The influence of the core size on the growth rate is found weak for the range of a

investigated (0.06 ≤ a ≤ 0.1) (see figure 9). For fixed value of L > 0.4, the growth rate

increases when the core size is decreased. As shown by Brancher & Chomaz [29], vorticity

concentration enhances the pairing instability even though this effect is relatively weak.

The limit L = 0 cannot be reached since the finite core size implies L & Na. For N = 2,

a = 0.09, this imposes L & 0.18.

The influence of the Reynolds number on the growth rate σ̄ has been investigated for

core sizes a = 0.06 and a = 0.09 (figure 10). It is observed that the Reynolds number

has a weak effect and that the growth rate seems to be slightly enhanced at low values

of the Reynolds number. There is no clear mechanism to account for this unexpected

behaviour which has been checked to be numerically robust.

4.3. Influence of a central hub vortex

We investigate the influence of a central hub of dimensionless circulation −2 on the

stability of two helical vortices. In our simulations, the hub core size is chosen equal to

the core size a of the helical vortices. The most unstable mode is depicted for L = 0.3,

a = 0.09 and Re = 10000 on figure 11. The mode structure for the helical vortices is
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Figure 9: Most unstable mode for two helical vortices for a = 0.06, 0.07, ...., 0.1 at

Re = 10000. (a) Maximum growth rate σ(L) (solid line) and σRing(d) (dashed lines) as

a function of L. (b) Normalized growth rate σ(L)/σRing(d) as a function of L.
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Figure 10: Influence of the Reynolds number on the normalized growth rate σ̄(L) for

two helical vortices. (a) core size a = 0.06; (b) core size a = 0.09.
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Figure 11: Most unstable mode for Re = 10000 with the base flow composed of two

helical vortices with L = 0.3, core size a = 0.09 and a central hub vortex with identical

core size. (a) Contours in the plane orthogonal to the z−axis of <{ω̂B}. (b) Schematic

representation showing the displacements (represented with green arrows) induced by

the unstable mode.
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Figure 12: Dominant instability mode for two helical vortices with the vortex hub (solid

line) and without (dashed line) for a = 0.09 and Re = 10000. (a) Growth rate σ(L) as

a function of pitch L. (b) Normalized growth rate σ̄d(L).

similar to the case without hub: it induces a displacement of these helical vortices. In

addition, the hub vortex is displaced in the same ”direction”. Such phenomenon was

experimentally observed [14] in a water channel downstream of propellers. The growth

rate is plotted in figure 12 as a function of L. For L < 0.7, the difference between growth
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rates with and without hub is always of the same positive sign though it is of order of

the numerical precision: one may thus conclude that the instability is unchanged or

only slightly enhanced by the presence of a central hub. On the contrary, for L > 0.7,

the growth rate abruptly decreases when the hub is present and the system stabilises

near L = 0.9.

5. Nonlinear evolution of two helical vortices in the helical framework

For small pitches, helical vortices are similar to vortex ring arrays, for large pitches

to straight vortices. Consequently, helical vortices might be subjected to mechanisms

observed in vortex rings and straight vortices. More precisely, one observes the well-

known leapfrog mechanism [24, 25] for several vortex rings and merging occurs for

several straight vortices when they are sufficiently close to each other [30, 31]. In this

section, we analyse the nonlinear evolution of helical arrays when they are perturbed

by the unstable mode obtained in section 4, their dynamic being restricted to helical

symmetry. Numerical computations which are performed using the HELIX code, are

thus initiated with

ωTotal
B = ωBF

B + A<{ω̂B}, uTotal
B = uBF

B + A<{ûB}, (34)

where uBF, ωBF are the basic flow components (see for instance figure 2-a for ωBF
B ) and

ω̂B, ûB are the instability mode components (see for instance figure 6-a for ω̂B). This

disturbance generates a small asymmetry between the two vortices by radially shifting

one of them. In the experiment by Bolnot [15], a somewhat similar asymmetry was

generated between the two blades of a rotor by radially shifting one of them. Finally,

amplitude A is set to A = 0.01
∥∥ωBF

∥∥ with ‖.‖ being the Euclidean norm. Such a

value guarantees the initial stage of the evolution to remain in the linear regime. The

nonlinear regime is then characterised by tracking the radial position rA(t) of each

vortex centreline. More precisely, the maximum of the helical vorticity component for

each vortex is radially located at rA(t).

5.1. Leapfrog or overtaking of two helical vortices

The nonlinear saturation dynamics of two helical vortices can be described as follows:

the radius of one vortex decreases while the radius of the other one increases leading to

the acceleration of the smaller one passing through the larger one. Snapshots of this basic

sequence at Re = 10000 of two vortices of pitch L = 0.30 with initial core size a = 0.06

are shown in figure 13. This basic sequence repeats itself, but this can occur in two

different ways, denoted as leapfrogging and overtaking. In the leapfrog dynamic, vortices

exchange their roles between two successive sequences. This mechanism was evidenced

for spatially evolving helical vortices [15, 32, 33]. It is observed here numerically in

the framework of helical symmetry (light grey areas in figure 14). In the overtaking

dynamic, the overtaking vortex is the same for two successive sequences. This new

behaviour has been found for intermediate values of L ≥ 0.5 at a = 0.06 (light green
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Figure 13: Basic sequence of the nonlinear evolution of two helical vortices perturbed

with the unstable mode. Case L = 0.3, initial core size a = 0.06 and Re = 104. Iso-

surface of the helical vorticity ωB = 1
4
ωmaxB (t). The grey region is the cylinder of radius

R = 1. Vortices are labelled (1 and 2) so that they can be tracked in time.

areas in figure 14) and also at lower pitch for smaller initial core sizes a = 0.03. During

overtaking sequences, the helix radius of one vortex remains greater than one, and

greater than the radius of the companion vortex. The overtaking dynamic when present

is always followed by leapfrogging. As a consequence, we define the time of first leapfrog

as the time when the two vortex radii are identical. When no overtaking is present,

this corresponds to the first crossing after the initial condition (see figure 14-b). When

overtaking sequences are present, the time of last overtaking is defined as the beginning

of the basic sequence preceding the time of first leapfrog (see figure 14-c). Because of

viscous diffusion, the basic sequence illustrated in figure 13 ceases to be observed after

a certain time. This is associated to the onset of merging as will be shown in §5.2. The

onset of merging time corresponds to the final time of the last observable basic sequence

(see figure 14-b).
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Figure 14: Influence of the reduced pitch L on the time evolution of vortex centres rA
at Re = 10000 and initial core size a = 0.06, for (a) L = 0.3, (b) L = 0.4, (c) L = 0.5

and (d) L = 0.7. The light green region corresponds to the overtaking phase, the light

grey area to the leapfrog phase, the dark grey area to the merging period and the blue

region to the merged state.

5.1.1. Influence of the reduced pitch L Let us perturb the two helical vortices of initial

fixed core size a = 0.06 for Reynolds number Re = 10000. The radial position rA(t)

are plotted with respect to time in figure 14 for various values of 0.3 ≤ L ≤ 0.7. Cases

L = 0.3 (figure 14-a) and L = 0.4 (figure 14-b) have similar dynamic i.e. vortices undergo

several leapfrog events and then merge: 5 leapfrog events (light grey area) are observed

before merging starts (dark grey area). For L ≥ 0.5, vortices first undergo several

overtaking events (figure 14-c and d). The number of overtaking events increases with
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L 0.3 0.4 0.5 0.6 0.7 0.8

number of overtakings 0 0 2 3 3 3

number of leapfrogs 5 5 3 3 4 5

time of the last overtaking 30.53 75 107.5 142.6

ath/h at the last overtaking 0.08 0.0972 0.0982 0.1013

time of the first leapfrog 10.65 20.24 51.9 105.1 151.1 200

ath/h at the first leapfrog 0.941 0.1081 0.0994 0.1133 0.1151 0.1148

time of merging onset 25.25 48.25 86.8 152.9 221 346

ath/h at merging onset 0.1242 0.1204 0.1247 0.1350 0.1379 0.1499

Table 1: Influence of pitch L on the nonlinear dynamics of two helical vortices with

initial core size a = 0.06 at Re = 10000.

a0 0.03 0.06 0.80 0.10

number of overtakings 2 0 0 0

number of leapfrogs 4 5 4 3

ath/h at the first leapfrog 0.1008

ath/h at merging onset 0.1229 0.1248 0.1242 0.1284

Table 2: Influence of the initial core size a on the nonlinear dynamics of two helical

vortices at pitch L = 0.3 and Reynolds number Re = 10000.

L while they occur at a slower pace (see table 1 which also contains values for L = 0.6

and L = 0.8). In addition, the peak amplitude increases with L so that for L ≥ 0.7,

the inner vortex gets near the z−axis (figure 14-d). After a few overtaking events, the

vortices start leapfrogging. From the same figures, it can be seen that the number of

leapfrogs also increases with L and that the events occur again at a reduced pace. Table

1 provides some additional informations: the values of ath/h evaluated at the time of the

last overtaking event and of the first leapfrog, with ath (t) =
√
a20 + 4t/Re. There exists

a critical ratio ath/h ≈ 0.10 which separates the overtaking regime from the leapfrog

regime.

5.1.2. Influence of the core size a The influence of the initial core size on the nonlinear

evolution is analysed by varying the initial core size from 0.03 to 0.1 while keeping

constant the Reynolds number at Re = 10000 and the reduced pitch at L = 0.3. Figure

15 displays the time evolution of the radial position of the vortex centres. Overtaking

is only observed for the smallest core size considered (a = 0.03) and table 2 shows that

the value ath/h = 0.10 is compatible with the threshold found previously. For larger

core sizes, only leapfrog is observed and as the initial core size increases the number of

leapfrogs reduces (see table 2). This can be explained by looking at the values of critical

ath/h measured at the onset of merging. Table 2 indicates a constant critical ratio of

0.12: this ratio is reached in a shorter time as the initial core size is increased, so that
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Figure 15: Influence of the initial core size on the dynamic of two helical vortices of

pitch L = 0.3 at Re = 10000. Simulations are initialised with core sizes (a) a = 0.03

and (b) a = 0.08. The evolution of rA as a function of time is displayed: the solid line

tracks one vortex and the dashed line its companion. The light green region corresponds

to the overtaking phase, the light grey area to the leapfrog phase, the dark grey area to

the merging period and the blue region to the merged state.

Re 1250 2500 3750 5000 6750 10000

number of leapfrogs 1 2 3 4 4 5

ath/h at merging 0.1814 0.1515 0.1383 0.1369 0.136 0.1248

Table 3: Influence of the Reynolds number Re on the nonlinear dynamics of two helical

vortices at pitch L = 0.3 with initial core size a = 0.06.

less leapfrog events occur. The amplitude of the initial leapfrog seems independent of

the initial core size a.

5.1.3. Influence of the Reynolds number Re The influence of the Reynolds number is

investigated here for constant pitch value L = 0.3 at fixed initial core size a = 0.06. The

number of leapfrogs increases with the Reynolds number (see figure 16 and table 3).

This observation is compatible with the existence of a critical ratio ath/h for the onset

of merging found here to be approximately ath/h ≈ 0.13: this ratio is reached later in

time for higher Reynolds numbers.

5.2. Merging of two helical vortices

The merging of large pitch helical vortices (L ≥ 1) has already been investigated

numerically for two [34] and three vortices [35]. It can be related to the merging of
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Figure 16: Influence of the Reynolds number on the leapfrog mechanism for two helical

vortices of pitch L = 0.3 and core size a = 0.06 at (a) Re = 2500 and (b) Re = 10000.

The evolution of rA is shown as a function of time. The grey region indicates the time

interval when leapfrogs occur, the dark grey represents the merging phase and the light

blue region indicates the merged state.

straight vortices. At lower L values, the situation is different and involves successive

coils. Merging thus occurs after leapfrog events: the process is illustrated in figure 17 at

several instants. The view in the meridional plane (right column) shows the similarity

of this process with merging in two-dimensional vortex arrays. Here, onset of merging

of two vortices seems to be associated to a critical ratio ath/h ≈ 0.13.

6. Dynamics of three helical vortices in the helical framework

6.1. Linear stability results for three helical vortices

The three helical vortex system has two complex conjugate unstable modes. Figure 18

displays the structure of the unstable mode with positive ω for L = 0.30, a = 0.09 in

the presence of a hub vortex. The perturbation is not zero at the hub location showing

that the hub vortex is involved in the unstable dynamic. Growth rates are plotted in

figure 19 as a function of L. The presence of a hub vortex destabilises the system. It

increases growth rates and the critical pitch: the system stabilises as soon as L > 1.6

(resp. L > 1.35) with (resp. without) a hub. This effect is the opposite to what was

observed for two vortices.



Helical vortices: linear stability analysis and nonlinear dynamics 22

t = 24

t = 25

t = 26

x
y

z

x

y

r

z

Figure 17: Merging at Re = 10000 of two helical vortices of pitch L = 0.3 and core size

a = 0.06 perturbed initially with the helical pairing mode. Left: isovalue of the vorticity

component ωB = 1
4
ωmaxB (t). Centre: contours of ωB in the z = 0 plane. Right: contours

of ωB in the meridional r − z plane.

6.2. Nonlinear evolution of three helical vortices

When initially perturbed by the unstable mode given in section 6.1, three helical vortices

display complex dynamics involving successive leapfroggings, as can be seen for instance

in figure 20 for L = 0.3 with a central hub vortex. The corresponding time evolution of

the vortex radial positions rA is plotted in figure 21-a. It reveals that a partial merging

of two vortices first occurs at t ≈ 7. The resulting vortex then leapfrogs with the last

peripheral one before finally merging at t ≈ 10. The central hub vortex is also affected
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Figure 18: Structure of the instability mode with positive ω for three vortices with

L = 0.30, a = 0.09 and a central hub. (a) Real part of the eigenvector ω̂B. (b)

Imaginary part of ω̂B.
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Figure 19: Dominant instability mode for N = 3 helical vortices with the vortex hub

(solid line) and without (dashed line) with a = 0.09 at Re = 10000. (a) Growth rate

σ(L). (b) Normalized growth rate σ̄d(L). It can be shown that the value of 8/9 displayed

in graph (b) is the maximum growth rate achievable in the point vortex analogy of three

helical vortices.
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and oscillates in the vicinity of the z−axis. Peripheral vortices evolve in a similar way

without hub vortex (figure 21-b), but the timescale is larger: the partial merging occurs

at t ≈ 10 and the final one at t ≈ 12.5. At a larger pitch L = 0.6, vortices evolve on

larger timescales when compared to similar cases at L = 0.3. However, the hub vortex

acts in a similar way: systems evolve faster with hub vortex than without hub. As far

as amplitudes are concerned, case L = 0.6 with hub reaches slightly higher amplitudes

than L = 0.3, before the final merging occurs at t ≈ 32 (see figure 21-c). The vortex

system resulting from merging has a helical dipole structure, and the radii rA(t) for

both opposite sign vortices show strong in-phase oscillations, with their amplitudes

slowly increasing in time. For L = 0.6, amplitudes in presence of a hub vortex (figure

21-c) are much smaller than without (figure 21-d). The hub vortex thus limits the

radial excursion of peripheral vortices. The merged state without hub (figure 21-d) also

oscillates.

7. Concluding remarks

Using a dedicated DNS code, we obtained basic states defining various helical vortex

configurations. An Arnoldi algorithm was then implemented on a linearised version of

this code to determine the linear stability properties of such basic flow with respect to

helically symmetric perturbations. For two or three helical vortex arrays, an unstable

displacement mode was identified at low pitch. Its dependency with respect to pitch,

core size, Reynolds number and presence of a hub vortex was also investigated. This

mode was shown to be analogous to the pairing mode of an infinite array of point vortices

or vortex rings. The nonlinear dynamics of two vortices perturbed by the displacement

mode was thereafter computed in the framework of helical symmetry: a sequence of

overtaking events, then leapfrogging and eventually merging were observed. Critical

ratios ath/h were determined for the transitions between these different sequences:

ath/h ≈ 0.10 triggers the onset of leapfrogging and ath/h ≈ 0.13 triggers the merging.

These values seem to be robust when varying the parameters (pitch, Reynolds, core

size), but we cannot claim they are universal since we do not provide any physical

explanation for them. Similar simulations were carried out for three helical vortices:

the hub vortex enhances instability and globally accelerates the dynamic. However

nonlinear oscillations of peripheral vortices may be limited when the hub is present.

This work was performed in parallel with laboratory experiments [15, 36] where typical

values for the parameters were Re = 104, L ≈ 0.1, a = 0.05, in the same range as our

numerical study. Clearly, these Reynolds numbers are far below the values prevailing in

wind turbine or helicopter applications, which are of order of 106−107. The experimental

measurements show the presence of different instabilities, in particular the one presented

in this paper, that was named global pairing instability [36]: the experimental evaluation

of the growth rate of this mode [15] coincides with the result obtained here at small L in

figures 9 and 10. Values of L larger than 0.1 have not been investigated experimentally

so far.
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Figure 20: Temporal evolution of three vortices with a hub vortex initially perturbed

by instability mode. Simulation at Re = 10000 with initial core size a = 0.06 and pitch

L = 0.3. Isosurfaces of helical vorticity correspond to ωB = 1
4
ωmaxB (t). The grey region

is the cylinder of radius R = 1. Vortices are labelled (1, 2 and 3) so that they can be

tracked in time.
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Figure 21: Temporal evolution of rA for three vortices with a hub (figures a and c) or

without (figures b and d). Simulations at Re = 10000 with initial core size a = 0.06

and pitch L = 0.3 (figures a and b) or L = 0.6 (figures c and d).

Regarding the nonlinear evolution of this global pairing mode, the basic sequence of

figure 13 has been observed experimentally in a spatial setting. However the distinction

between overtaking or leapfrogging is not accessible experimentally since only one basic

sequence is observable in the existing facilities.

In experiments, many other modes exist although the global pairing mode dominates

when present. These modes are local pairing modes that break the helical symmetry.

They were thus excluded from the present analysis. An extension of the present

linear instability study to modes breaking the helical symmetry has been performed

numerically [19] and found able to reproduce the stability curves of local pairing modes.
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These results are beyond the scope of the present paper.
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