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ABSTRACT

Fundamental mechanisms at play in the dynamics of the two helical-vortex system are highlighted by DNS associated to
theory: merging mechanisms at large, medium or small pitch, leapfrogging/overtaking dynamics before merging at low pitch.

1. Introduction

Blade-tip vortices generated in the wake of rotat-
ing devices often have – at least locally – a helical sym-

metry, i.e. the flow is invariant through combined trans-
lation and rotation along their common axis. Examples
are the wake of wind turbines, marine propellers... He-
lical symmetry has been used for a long time now to
derive wake models based on polygons of inviscid vor-
tex filaments. It is then possible to express induced ve-
locity fields, translation or rotation speeds of the struc-
tures themselves, and to investigate their instabilities.
Although very fruitful, such approaches naturally pre-
clude the study of intrinsic viscous dynamics, such as
helical vortex spreading, merging of several vortices...

Similarly to the case of plane or axisymmetric
flows, helically symmetric flows can be described using
only two space variables, allow the use of a streamfunc-
tion, and their dynamics is governed by a set of two
coupled equations for the helical vorticity and veloc-
ity components. Following this line, a direct numerical
simulation (DNS) code named HELIX [1] has been de-
vised to compute the time evolution of the flow within
the framework of helical symmetry. The code takes into
account three-dimensional effects but is based on two-
dimensional numerical integration techniques, allowing
for long integration times and high Reynolds numbers.
Helically symmetric flows and their DNS are briefly de-
scribed in § 2.

The code has been first used to investigate the
merging of two helical vortices. Several scenarios have
been brought out depending on the pitch, as presented
in § 3. Helical vortices with a long pitch behave much
alike straight vortices. Below a critical pitch however,
instability sets in, causing the mechanism of merging to
change drastically. For small-pitch vortices, the princi-
ples of a theoretical study of the dynamics before merg-
ing is presented in § 4. Helical vortices with small pitch
are shown to bear many similarities with coaxial vortex
ring systems, they undergo the well-known leapfrogging
dynamics, but other dynamics have also been predicted.

2. Flows with Helical Symmetry

Flows with a helical symmetry of pitch h = 2πL
(L is the reduced pitch) have their velocity, pressure
and vorticity fields invariant under the combination
of an axial translation of ∆z and a rotation of an-
gle ∆z/L about the same axis. They can be de-
scribed using only two space variables, namely radius r
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and variable ϕ = θ − z/L, where (r, θ, z) denote the
usual polar coordinates. Under the assumption of he-
lical symmetry, incompressibility implies that the ve-
locity field can be expressed using only two functions
as ~u = uB~eB + α(r)∇ψ × ~eB where uB designates the
velocity component along the unit vector ~eB tangent to
helical lines, ψ(r, ϕ, t) the helical streamfunction and
α(r) = (1 + r2/L2)−1/2 a geometrical factor. The gov-
ering equations can be written as a set of two dynamical
equations for uB and ωB ≡ ~ω · ~eB :

∂tuB +NLu = V Tu
∂tωB +NLω = V Tω .

(1)

The expressions of nonlinear (NL) and viscous terms
(VT) can be found in [1]. The HELIX code implements
the time integration of (1) over a circular domain. Non-
singular boundary conditions are enforced at the axis
and potential flow at the outer boundary. Fourier series
for the 2π-periodic variable ϕ, and 2nd order finite dif-
ferences along r. The time advance is performed using
second order backward discretisation of the temporal
derivative. Nonlinear terms appear explicitly through
2nd order Adams–Bashforth extrapolation whereas the
viscous terms are integrally treated implicitly.

In the following, quantities are made dimension-
less using the initial helix radius R0 as length scale and
R2

0
/Γ as time scale, Γ being the circulation of each of the

two helical vortices considered. The Reynolds number
is defined as Re = Γ/ν. Details on how initial condi-
tions are elaborated in this context are available in [2].
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Fig. 1 Merging of vortices: (a) straight vortices, (b)
large-pitch helical vortices, (c) small-pitch helical vor-
tices, (d) array of vortex rings. The arrows qualitatively
indicate the merging dynamics.



3. Merging of Two Helical Vortices: Effect of

the Pitch L

Using the DNS code, we investigated the various
mechanisms through which two helical vortices merge.
A set of simulations were performed for pitches rang-
ing from L = 0.5 to L = 3 and Reynolds numbers
from Re = 1 000 to 10 000. The initial core size was
chosen relatively large at a0 = 0.2 in order to shorten
the phases preceding merging itself. At large pitch
(L ≥ 1.9), helical vortex merging is qualitatively anal-
ogous to the merging of 2D vortices (figure 1a), and
the process can be described as a convective merging at

axis (figure 1b). On the opposite side, helical vortices
at small pitch (L ≤ 1.2) are potentially prone to an in-
viscid instability [3] whereby facing coils of the two vor-
tices move towards each other (figure 1c). This merging

induced by instability is found to be, for helical vortex
coils, a process analogous to the pairing instability of
an array of vortex rings (figure 1d). At intermediate
pitch (1.2 < L < 1.9), the merging is purely viscous,
and can result either in a single vortex along the axis,
in a single helical vortex, or in a cylindrical vorticity
layer. The different types of merging are summarized
in figure 2 in the (Re,L) plane, while extensive details
on physical mechanisms can be found in [2].
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Fig. 2 Merging of two helical vortices: different scenar-
ios in the (Re,L) plane. Right: typical time evolutions
of ωB is a plane orthogonal to the helix axis.

4. Leapfrogging Dynamics of Two Small Pitch

Helical Vortices

When the initial core size a0 is taken sufficiently
small (0.05 for instance), merging does not occur as
soon as presented in § 3. At small pitch, the two vor-
tices destabilize through linear instability, and a rich
nonlinear interaction dynamics sets in before merging,
which consists of a sequence of elementary events with
one of the vortices passing “through” the other; note
that the term “through” would be appropriate for rings,
it designates here the counterpart for helical vortices,
as illustrated in figure 3a. One major finding is that
vortices behave differently depending on the way they
are being disturbed initially. If displaced azimuthally
(or axially) towards each other, they undergo a suc-

cession of leapfrogging events : vortex 1 passes through
vortex 2, then vortex 2 through vortex 1 and so on until
they merge. If displaced radially however, they first un-
dergo a succession of overtaking events : vortex 1 passes
through vortex 2 several times before the alternating
leapfrog begins, eventually leading to merging.
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Fig. 3 (a) Elementary event in the nonlinear dynamics
of two helical vortices. (b) Iso-Hamiltonian lines in the
(r, z) plane, showing several types of vortex trajectories.

These dynamics can be accounted for theoretically
at small pitch by replacing helical vortices by two infi-
nite arrays of vortex rings (figures 1c-d) and, if viscosity
is left aside, adopting a Hamiltonian formulation. Con-
servation laws then lead the vortices to follow specific
lines in the (r, z) plane, as displayed in figure 3b. These
results are confirmed by Biot-Savart simulations of in-
viscid helical vortices within the cut-off theory. In the
viscous framework, DNS indicate that there is a tran-
sition from overtaking to leapfrog, and thereafter from
leapfrog to merging, monitored by the ratio a(t)/L [4].

5. Conclusion

Enforcing helical symmetry into a DNS code leads
to highlight some fundamental mechanisms at play in
systems of helical vortices, namely various scenarios of
merging and of nonlinear dynamics following the insta-
bility at small pitch. This work was done in collab-
oration with Maurice Rossi, Benjamin Piton and Can
Selçuk. HPC resources from GENCI-IDRIS (Grant No.
2018-2a1386) are acknowledged.
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