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ABSTRACT
Due to their peculiar geometry, helical vortices created e.g. in rotor wakes have a non-axisymmetric vortex
core. Vortex curvature and ellipticity induce three-dimensional instabilities which are characterized by their
wavelength comparable to the core radius. We numerically investigate the growth of such short-wave instabil-
ities linearized in the vicinity of a quasi-steady helical vortex solution, and relate their properties to available
asymptotic theories.

1. Introduction

The wake of large size wind turbines and the way
it affects the electrical production in a farm need to
be accurately predicted. It is however a challenging
task because the basic flow structures (tip and root
vortices) are not easily characterized. Large-scale
flow structures of turbine wakes are often modeled
using an array of interlaced helical vortices [1], the
temporal instability of which reflects the spatial in-
stability occuring in the real wake. In most cases, the
dominant instability involves neighbouring coils, and
is referred to as long-wave instability [2]. However,
helical vortices are also affected by the growth of
short-wave instability characterized by wavelengths
comparable to the vortex core size. The origin of
such instability is to be found in the deformation
of the vortex core, which can be due to coil-coil in-
teraction, or simply to the curvature of the vortex.
Triadic resonances between this steady deformation
and a couple of traveling vortex-core waves may then
cause so-called curvature [3] and/or elliptic [4] in-
stabilities. In the present paper, we investigate the
growth of perturbations in a single quasi-steady he-
lical vortex obtained by direct numerical simulation
(DNS) at high Reynolds number. Such instabilities
are very sensitive to the vortex parameters, namely
helical pitch 2πL (spatial period of the helix), heli-
cal radius R0, vortex circulation Γ, core size a0 and
axial flow amplitude W0, which need to be carefully
monitored.

2. Methodology

In all the following, polar coordinates (r, θ, z)
about the axis z of the helical vortex are used.

2.1 Base Flow

A quasi-steady infinitely long helical vortex so-
lution is first generated, using a dedicated code
HELIX [5] which solves the incompressible Navier–
Stokes equations in a single plane, with enforced
helical symmetry of pitch L. In this formulation,
scalar variables and polar components of vector fields
depend only on two space variables (r, φ), where
φ ≡ θ − z/L. The initial condition is a vortex fil-
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Fig. 1 Example time evolution of a helical vortex with
L = 0.3. Snapshots of the helical vorticity component
represented in a plane orthogonal to its helical centerline.

ament with Gaussian helical velocity and vorticity
profiles. Such distribution is known to be a quasi-
steady state in the limit of infinite pitch, when the
vortex is straight. However, this is not the case for
helical vortices, which leads to an unsteady transient
evolution phase. The procedure detailed in Ref. [6]
is here slightly modified to accelerate the conver-
gence towards a quasi-stationary state: a first sim-
ulation phase is run at medium Reynolds number
(Re = 3000) allowing to quickly dampen out tran-
sients, then a second phase is run at larger Reynolds
number (Re = 2π104), leading to an approximate
base state after a second, relatively short, transient
phase. Initial conditions for this double run are then
iteratively corrected so as to approach the prescribed
parameters in the final state. Here, the reference
length and time scales are respectively the radius of
the final helical vortex R0 and the ratio R2

0/Γ, so
that the Reynolds number is defined as Re = Γ/ν
(ν is the kinematic viscosity). The nondimensional
parameters of the base flow are, beside the unit cir-
culation and helical radius, the following:

• the reduced helical pitch L̄ = L/R0,

• the nondimensional core size ā0 = a0/R0,

• the inverse swirl W̄0 = 2πW0a0/Γ that quanti-
fies the amplitude of the axial flow within the
vortex core with respect to the aximuthal mo-
tion.



Table 1 Parameters of the base flows under study.

base flow L̄ ā0 W̄0

A 0.3 0.11 +0.23
B 0.3 0.11 −0.23
C 0.7 0.15 +0.2
D 0.7 0.15 −0.2

There is no unique way of evaluating the above pa-
rameters in a curved vortex: the method used here
is described in Ref. [6]. The parameter values for the
base flows used in the present study are summarized
in table 1. The figure 1 illustrates how the obtained
quasi-steady state is not axisymmetric, due to curva-
ture and to interaction with other parts of the helical
vortex.

2.2 Instabilities

One of the above high-Reynolds-number, quasi-
steady states is then frozen and used as a base flow.
Because of helical symmetry, the base pressure as
well as base velocity and vorticity polar components
only depend on r and φ. Linear perturbations to
base quantities can thus be written in the complex
framework as a sum of plane waves along z of the
form:

f(r, φ, z, t) = f̃(r, φ) exp[i(kzz − ωt)] exp(σt) . (1)

Here, kz denotes the real axial wavenumber along z,
ω the real frequency of the instability mode and σ
its temporal growth rate.

A second dedicated code called HELIKZ is used
to determine the dominant instability mode for a
fixed arbitrary value of the axial wavenumber kz.
This code indeed solves the Navier–Stokes equations
linearized in the vicinity of a helically symmetric base
flow, where formula (1) has been injected. The code
uses a primitive velocity-pressure formulation, how-
ever with complex variables. Details on the code and
on the procedure used can be found in Ref. [7].

A first run is performed at some value k
(0)
z , using

divergence-free white noise localized in the core re-
gion as an initial condition. The dominant instability
mode emerges from the simulation, and its growth
rate, frequency and structure can be extracted from
simulation results. Such simulation is typically run
over more than 100 units of time. Modes on the
same branch but with different wavenumbers k

(n)
z =

k
(0)
z + nδkz can be obtained using a simulation at

k
(n)
z initiated by the final state obtained at k

(n−1)
z

run over several units of time. This procedure is
used to obtain the whole unstable branch.

3. Results

3.1 Elliptic Instability

The first mode studied is obtained through base
flow A of table 1, for nondimensional wavenumber
k̄z ≡ kzR0 = 103.3. This flow is dominated by
an instability involving Kelvin waves of azimuthal
structures m = −2 and m = 0, and is called the
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Fig. 2 Perturbation of the helical vorticity for ellip-
tical instability mode (−2, 0, [2, 2]) in base flow A for
wavenumber k̄z = 103.3 (k̄s ≈ 3.265) (a) in a plane lo-
cally orthogonal to the helical centerline of the vortex,
(b) in 3D over one helix turn.

(−2, 0, [2, 2]) elliptical mode [8, 9]. The structure of
the (real) helical vorticity perturbation plotted in fig-
ure 2 illustrates how such instabities are able to gen-
erate small scales within the flow.

3.2 Curvature Instability

The second mode investigated is obtained
through base flow C of table 1, for wavenumber
k̄z = 20.3. This flow is dominated by an instabil-
ity involving Kelvin waves of azimuthal structures
m = −1 and m = 0, and is called the (−1, 0, [2, 4])
curvature mode. Curvature modes have been pre-
dicted theoretically in helical vortices [10]. The
present study confirms their occurence in a realis-
tic helical vortex for the first time, as revealed in
figure 3.

3.3 Comparaison With Theory

Using the procedure described in §2.2, each in-
stability mode may be numerically followed while
varying kz by step, leading to numerically deter-
mine growth rate σ(kz) and frequency ω(kz). The
above results may be compared to those obtained by
Blanco–Rodŕıguez & Le Dizès [9,10]. These authors
have performed an asymptotic theoretical study valid
when the core size is much smaller than the radius
of curvature or than the helical pitch. The velocity
field is expanded in powers of a self-strain parameter

ε = a0κ =
a0R0

R2
0 + L2

,

where κ is the curvature of the helical vortex. The
cases listed in table 1 all have ε = 0.1. In the
matched asymptotic expansions, the vortex core
structure is at leading order an axisymmetric Batch-
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Fig. 3 Same as figure 2 for curvature instability mode
(−1, 0, [2, 4]) in base flow C for wavenumber k̄z = 20.3
(k̄s ≈ 1.746).

elor vortex of core size a0. Thereafter, small ampli-
tude perturbations around this reference axisymmet-
ric state introduce local effects due to curvature and
torsion, and global ones due to the remote vortic-
ity of nearby helix turns that modify this reference
structure. Since the z-axis of our helical vortex has
no counterpart in the asymptotic theory, we adopt a
local nondimensional wavenumber

k̄s =
kza0√

1 +R2
0/L

2

defined along the helical centerline, with different
space and time reference scales a0 and 2πa20/Γ.

The nondimensional growth rates σ̄ obtained by
DNS and via the asymptotic theory [9] are superim-
posed in figure 4a, for the elliptic instability of base
flows A and B, showing excellent agreement. The
only difference between case A and case B is the di-
rection of the axial flow present in the vortex core,
such that W̄0 = ±0.23. Both flows have the same
value of the small parameter ε, which would lead to
a unique curve according to Ref. [9], where torsion ef-
fects have been overlooked. Restoring torsion effects
leads to a differentiation between both cases, as can
be seen on the theoretical curves shifted along the
k̄s axis one with respect to the other. This trend is
fully confirmed by the DNS results.

Figure 4b shows similar results relative to the
growth rate for the curvature mode instability of
base flows C and D. Considering the fact that the
growth rates are quite small here, the discrepancy be-
tween DNS and theory is actually comparable (even
smaller!) to that obtained for elliptic instability.

4. Conclusions

Accurate and efficient numerical tools have been
designed to study the short-wave instabilities in he-
lical vortices, both of elliptic type and, for the first
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Fig. 4 Growth rate of (a) elliptical instability mode
(−2, 0, [2, 2]) in base flow A (black) and mode (0, 2, [2, 2])
in base flow B (red) and (b) curvature instability mode
(−1, 0, [2, 4]) in base flow C. Symbols: DNS results.
Solid: asymptotic theory.

time, of the curvature type. With respect to re-
cent similar work carried out in the context of vortex
rings [11], the instability is found here to be sensitive
to the torsion of the basic helical vortex, and thus to
the axial flow direction, but presumably also to the
helical pitch (investigation in progress).
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