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INTRODUCTION

Many systems develop helical vortices in their wake (propellers, wind tesbihelicopters).
Such flows can be assumed, at least locally, to be helically symmetric, i.e mvdriaugh
combined axial translation of distané& and rotation of angl® = Az/L around the same
axis, where 2iL is a constant called the helix pitch. Analytical [1] and numerical [2] works
describing stationary vortices are mostly restricted to inviscid filaments andgzatelere, we
present results from a direct numerical simulation (DNS) code with builtlindlsymmetry [4].
This code is able to simulate the viscous dynamics of distributed vorticity pratfilesntains

in a simple way the effects of 3D vortex curvature and torsion, and allo@d@reach higher
Reynolds numbers when compared to a full 3D DNS.

In this framework, the long-time (or equivalently far-wake) dynamics gltarly spaced
helical vortices is investigated. In this article, we focus on the case ofitteatcal vortices, and
simulate their dynamics as their pitch and Reynolds number is varied. Thistfhemdal work is
indeed motivated by the case of wind turbine wakes, which are known torbmeted by helical
tip and root vortices. At rated wind velocity, the reduced pitaobf tip vortices is related [5] to
the rotor radiufk and to the tip-speed ratid (which is the ratio between the tangential blade-tip
velocity and the wind speed) dy/R = v/2/(3A): for typical valuesA = 5— 10, this yields
values as low as.05— 0.1, but smaller as well as far larger values can be reached for other
wind speeds. Typical Reynolds numb&es=I" /v based on the circulation of the vortices ¢
denotes the kinematic viscosity) are of several million. In these systemsallveconditions
are made far more complex because of the turbulent atmospheric bolagarsand of coherent
structures possibly shed by an upstream turbine, especially in farmsiragéeanodelling can
be improved if the vortex dynamics and the transition in such complex flows isrsitodd at
a fundamental level, and this can be achieved only at the cost of seéngkfisations. The
present study is done in this spirit. Here, the Reynolds number doesaesas08, the effects
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of nonuniform incoming flow conditions are disregarded and, as a f&pt $he root vortices
are not taken into account. This allows us to focus on basic helical votepaations occuring
in this system. At largé /R, a “classical” three-vortex merging takes place, which somewhat
resembles the twodimensional two-vortex merging. Wh¢R is reduced, it takes more and
more time for the vortices to merge, as their rotation speed around the systeim sbowed
down by self-induced vorticity effects. This phenomenon is explainedlywing the interplay
between vorticity and streamfunction in the co-rotating frame of refere8jcaifid tracking the
locus of hyperbolic points of the streamfunction. At lawR-values, typically less than 1, the
exponential instability described by Okulov [6,7] is obtained, resulting ifouargrouping and
merging scenarii at the nonlinear stage of evolution. At intermedlig®values of the order of
1, only viscous diffusion acts, resulting in a, slow, viscous type of merging.

Other types of instabilities which are fully threedimensional are not destriliin this
helical framework. The helical code run on a short period of time alloves tongenerate a
guasi-steady flow state which may then be used to investigate such instabilities.

NUMERICAL CODE WITH HELICAL SYMMETRY

Governing equations

A flow displayshelical symmetry of helix pitch 2rL along a given axis if its velocity field is
invariant under the combination of an axial translatiodAn&nd a rotation of anglaz/L around
the same axis. The flow characteristics are identical along the helical@ires/L = const.
L > 0 corresponds to a right-handed helix dné: O to a left-handed helix. A scalar field
is helically symmetric if it depends on only two space variablesxd$ = 0 — z/L. Helical
symmetry for a vector field can be expressed as follows:

u=ur(r,¢,t)e(0) +up(r,@,t)e(r, ) + Us(r, @, t)es(r, 6) (1)

where the orthonormal Beltrami basis (see fig. 1) is defined as

&(r0) =a(r) [e+es(6)], &(6), e(r0)=exe v
with B
a(r):(1+|r_22> 2, 0<a(r)<1. (3)

A general incompressible helical flow can be expressed with only twordcllds as:

u=uy(r,d,t)es+a(r)dy(r,¢,t) xe; (4)
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Figure 1: Local helical basis.

wherey(r, ¢,t) is a streamfunction. Its vorticity field can be expressed as follows:

W=w(r,¢,t)es+all <UB(LM) X €. 5)

The global field is given by the two scalar fields(r, ¢,t) andus(r, ¢,t) : indeed the stream-
functiony is slaved to both the component of vorticity and of velocityug along the unit vector

€ by
2

2a
ws=—-Ly+ TUB (6)

where the linear operatdr is a generalized Laplace operator:

2
L0 = 15 g5 (1025600 + 2 g2 @

“raor

The dynamical equations can be thus formulated within a generalization dbitidasd 2D
—w method. The equation faf; reads as

GUs+NLy =VTy 8
where the nonlinear and viscous terms are given by

NL, = e-[wxul,

Us. 202 9)
VT, = v|L(=)-=—
u v | L( a) [
The equation fory; reads
Gws+NLy=VT, (20)

where the nonlinear is given by

NLy =6€s-0x [wxu], (11)
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and the viscous term by

VTy=-— -Ox [0 =
© ve-Ox[Oxw =v ] 3

2\ 2 2
L(‘j)—(z“) mz"u‘j;)]. (12)

The boundary conditions are regularity conditions at the axis and potéintiatonditions at
the outer circular boundary. As variabfe= 6 — z/L is 2r-periodic, the numerical code uses
Fourier series along that direction, and second order finite diffesandbe radial direction. The
time advance is performed using second order backward discretisattantefnporal derivative.
Nonlinear terms appear explicitly through second order Adams—Baslefrtpolation whereas
the viscous terms are treated implicitly. More details can be found in [4].

Here we simulate the evolution of three identical helical vortices of circuldtioheir
maximum vorticity is at distanc®, from the axis, and are equally distributed along the az-
imuth. Each vortex has an initial small core s&gand a pitch 2iL. It would be possible to
make quantities dimensionless using the helix raiyas space scale, quantﬁ%/r as time
scale. The physical problem would then depend on three dimensionlessgiars, namely the
Reynolds numbeRe = I" /v, and the two ratiod /Ry andag/Ry. However, the problem can
be made generic and dependent only on two parameters if one consieletex dynamics
starting from asingular helical vortex of radiusR,, pitch L and core sizea, = 0 at a certain
time origin, sayt,. Selecting different core size® as initial conditions for the simulation at
t = 0 then amounts to perform a shift @fto different points in the past. This procedure, com-
mon for rectilinear vortices in 2D vorticity dynamics, is extended here to helimdices. In
the following we thus adopt the quantiti®s andR2/I" as space and time scales. The dynamics
is governed by the two parametd®e and the reduced pitch = L/R,. The initial condition at
t = 0 is arbitrarily chosen with core siz = ap/R. = 0.2 and radiu®y = Ry/R, = 1. At the
very beginning of the simulation, the radius abruptly increases by less %as the initial con-
dition is no equilibrium state. How the vorticity and velocity distributions are built #e time
t, computed is explained in the following section. Hereafter, all quantities arendiordess,
and, for sake of simplicity, we drop the bars above the corresponditapies.

Generic initial conditions for a set of helical vortices

When defining an initial condition with finite core size, it is thus important to enguat this
state results from the time evolution of an initial singular helical vortex line. Birighin the
helical symmetry, the conservation of vortex circulatioand axial momenturfil, leads to

R2r
L

/deS:F, /rwgdS: . (13)
Let us choose the distributiodd, in the (r,¢) plane, which corresponds to a Gaussian helical
vorticity profile of sizeag in a plane orthogonal to the singular filament. When» o such a
solution is an inviscid equilibrium which diffuses via diffusion from a singdiment. When

L is finite it is an approximate inviscid equilibrium.
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In order to fully determine the flow field, it is necessary to determine the hel&atity
distributionus. A possible initial condition is such thag/a =T /(2mL). This is the case when
the vorticity field is everywhere tangent to helical lines. In the inviscid fraorkwit is known
that it remains so. When viscosity is present, this does not hold anymaté, @an be shown
that a gradient ofiz/a is generated via viscous coupling betweanandus. Let us define the
function f as

It can be established that in the limit of sméllthe following relationship holds:

2(t—t,)

(he)=""Tre

aws(r,¢).

For the generation of the initial condition, we hence asstinh@ be proportional taxws;. We
then seek two normalisation consta@tandD such that

aw;=Cadx and f =Dad.

These constants are obtained using the conservation laws (13). Intordempute the time
origin t, corresponding to the singular vortex state, we use another conserlatidinked to
the angular momentum:
2(t—t
/ fas= 2%

L Re

that directly yields, when applied to the initial condition at= 0.

The computation is done on dimensionless variables hEneel, Ry = 1, ag = 0.2. The
numerical domain is a disk of radil&y = 3, meshed byN; x Ng grid points. For Reynolds
numberRe = 5000 and 10000, one chosds= 512 andNg = 384. WhenRe = 1000, these
values can be reduced iy = 256 and\g = 192.

MERGING OF LARGE PITCH VORTICES

A typical case: L = 2, Re= 5000

In this section, we consider three helical vortices with large pitch, typitally2, and describe

the merging process. Fig. 2 displays the helical vorticityand velocityus/a components in

the z= 0 plane for several times during the simulatiorLat 2 andRe = 5000. Also plotted

are the streamlines in the frame rotating with the vortex system, obtained astmasoof the
co-rotating streamfunctiofyr. These figures can be discussed in association to fig. 3a and 4a
which characterize the motion in tlze= 0 plane of the point with maximum helical vorticity

ws, more specifically its radial positionnax(t) and its angular velocit@(t). In a first phase,

the vortices rotate (see snapshots att, = 156) counterclockwise and grow in size through
viscous diffusion. Around a critical timg —t, = 363, the vortices enter a second phase of
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Figure 2: Isocontours of (ajs (colored and filled) andsr (white lines) and (bys/a (colored
and filled) andyr, att —t, = 156,376,456 956. Simulation fo. = 2 andRe = 5000.

the dynamics, namely a motion towards the center (see snapshotd.at 376), while their
angular velocity drastically increases. As there is a continuous shift frizase 1 to phase 2,
we use the geometrical construction shown on fig. 3a to definks for the case of two-vortex
merging, the second phase stops when the vortices are at a certainedfstamthe center, here
fort —t, ~ 400. A third phase (40& t —t, < 600) then begins with radial oscillations while the
vortices keep on expanding (see shapshats-at = 456). This expansion leads to an azimuthal
overlap of the vortices and to an eventual axisymmetric corona of helici@titap This feature

is absent for two-vortex merging where a single central vortex is formefiurth phase then
begins (600< t —t, < 816) where the maximum of vorticity inside the corona gently drifts
towards the axis, as the asymptotic state is Gaussian (fifth phase). Thanpdreon is seen in
fig. 3a where a plateau without any oscillation is present as phase 4, hdsato counterpart in
the case of two-vortex merging.

Influence of the Reynolds number

The influence of the Reynolds number on the dynamics is shown on fig.riéleasing the
Reynolds number has several effects:

e Phase 1: the initial diffusion phase 1 is longer as viscous diffusion is dingéidjsind it is
observed from the simulations that the duration of this pise- t; —t, is proportional
to Re at a fixed value of.
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Figure 3: Radial positiomyax of the vorticity maximum as a function of time—t, (a) for
L =,3,2.5,2 andRe = 5000, (b) forL = 2 andRe = 100Q 500Q 10000.

e Phase 2: it is seen that the distamggy(t2) at the end of the radial compression phase 2
weakly depends on the Reynolds number, and this phase is shorter lier IRgynolds
numbers.

e Phase 3: the frequency of the oscillations during phase 3 do not depehé Reynolds
number, and they are less damped at Hirgh

e Phase 4: the duration of this purely diffusive phase is directly prop@aittorthe Reynolds
number.

Influence of the helical pitch

On fig. 3a, it can be seen that decreasing the pitdhom its infinite 2D value at constant
Reynolds numbeRe has a marked slowdown effect on the merging process. One may be
tempted to attribute this slowdown process to the fact that the vortices rotateesiker an-
gular velocity ad. is decreased, as depicted in fig. 4a. This reduced rotating speed comes f
the increasing role of the self-induced velocity which tends to make vortitaterclockwise.

This effect is at the origin of the longer time scales observet msdecreased, but not in a
straightforward fashion, as explained below.
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Figure 4: (a) Rotation rat@ of the position of maximum vorticity with respect to time-t,

for L=,3,2,1.51,0.5 andRe = 5000. The circle denotes a state for which the maximum
vorticity is at this axis, a square denotes a symmetry breaking instability. (Igr&d core size

of individual vorticesa? as a function of timé —t, for L = «,3,2.5,2, 1.5 andRe = 5000. The
dashed-line shows the 2D diffusion laf(t) = a3+ 4t/Re.

It should be first noticed that changiihghas no significant effect on the time evolution of
the vortex core size during phase 1 (see fig. 4b). The evolution law rerolase to the 2D one
a’(t) = a3 +4t/Re. Yet, the critical core siza(t;) at which phase 2 begins increased ds
decreased. An explanation can be found by recalling the way the twodonahgortex merging
works in the two-vortex case: there, the convective merging phaseishebile a significant
amount of vorticity has escaped the closed atmosphere of the two vortickbegins to form
filaments in the surrounding fluid. A similar scenario takes place here, amsbo fig. 5: at
critical timety, vorticity has filled the atmosphere of the three vortices, and begins toesistap
the peripheral rotating fluid through the hyperbolic points of the corotatiegmfunction such
as H, because of viscous diffusion. The subsequent formation of filamebislieved to be
associated to the convective phase 2 whereby vortices are radiallgptmshiards the axis. It
has been shown [8] that, for different valued.cdindRe, the pertinent parameter for convective
merging is not the rati@/rmax, but rather the ratio between the core sizand the distance
d =E;H; between the vortex center and the outer hyperbolic point (see fig. 5k, &kl is
decreased, the rotation speed decreases also, causing the hypesbukcof the co-rotating
streamfunction to move away from the axis, dancreases. It is observed from the simulations
that, at critical time, the ratia/d remains near the value®+ 0.05 for all L andRe (this value
is 0.36 for 2 helical vortices). Hence the critical core size increaseshigeithd asL is
decreased, which makes phase 1 last longer.

Fig. 5 also shows the topology of the flow in the vicinity of the axis: contrarily &ttto-
vortex case, a small central region is present, here of triangular sHdpe structure seems
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Figure 5: Isocontours afy; (colored and filled) angr (white lines) forL = 2 andRe = 10000
near critical time before the convective phase 2. The streamline pattetaydispo types of
hyperbolic points and two types of elliptic points.

robust — in the two-vortex case, we have here a single hyperbolic @jirt-[since it prevents
the merging of the vortices at the end of the oscillation phase 3 (see fig—2at 456).

DIFFUSIVE MERGING AT INTERMEDIATE PITCH

At intermediate pitch. ~ 1.5, the rotation speed of the system is weak so that the hyperbolic
points such as Hare situated far from the axis (typically at distarce 2), so that neither
filamentation, nor convective merging occurs. The behaviour of therayist¢hus dominated

by viscous diffusion and successive vortices smoothly merge (figi@a)ing an axisymmetric
corona of vorticity at a radial distance from the axis of order unity, sipgg~ 1.

INSTABILITY OF SMALL PITCH VORTICES

At small pitches, an array of helical vortices is known to be unstable [5i8] m@spect to dis-
placement modes, a phenomenon responsible for the destabilisation efigremd wind tur-
bine wakes. Okulov [6] showed that the critical pitch under which sudaligy occurs for the
three vortex case with zero core sizé js= 1.132. In the simulation dt = 1.5 of fig. 6a, the sys-
tem is a priori stable with respect to Okulov’s threshold. In order to cti@skthe simulation has
been launched for the same parameter values, with an initial perturbatioe padition of the 3
vortices (one of them has been radially pushed by 0.001, and one atimerthally displaced by
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Figure 6: (a) Isocontours afy and Yr att —t, = 260560,660,960. Simulation forL =
1.5 and Re = 5000 without initial perturbation. (b) Isocontours af and Yr att —t, =
261,361 461 661. Simulation fol. = 1.5 andRe = 5000, starting from a state in which the
vortex positions have been perturbed by an amount 0.001.

0.001). The results are depicted in fig. 6b. It seems that an instability i€ aatid its effects are
felt fromt —t, = 300, causing two of the vortices to merge (see snapstiet t= 361). After
an exchange of vorticity (see snapshot att, = 461), the system adopts a stable configuration
with two thick-cored helices (see snapshat-at, = 661). One possibility is that the finite core
size significantly alters the instability threshold, but this remains to be asceftaine

At the pitch valueL = 1, the system should definitely be unstable. However, if no per-
turbation is initially set and the growth rate is small enough, the system maydifitis an
axisymmetric helical sheet before the Okulov instability develops significaittys is illus-
trated on fig. 7, up to time—t, = 572. It can be also observed that the newly formed sheet is
unstable with respect to an azimuthal perturbatios 1 (see at —t, = 402). This leads to a
destruction of the sheet (arouhd t, = 452) and the system asymptotically converges towards
one single helical vortex with a thick core (se¢ at, = 852). However, two reservations can be
made: (a) at larger Reynolds numbers, the instability may become active tieécsheet forms,
(b) the restriction of the study to a helically symmetrical flow with fixedresumably affects
the way the sheet destabilizes: an instability mode is selected, but other witlvedifferent
pitches may be more unstable.

If a perturbation of small amplitude is initially set on the systenifer 1, then the instability
is rapidly felt on the dynamics of the three vortices. This is illustrated on fignedy time
t —t, = 122. One of the helical vortices is then strongly stretched and merges véthfdhe
others (se¢ —t, = 142 andt = 162.) This is reminiscent of the vortex grouping observed in
some experiments [9]. The subsequent evolution is also interesting: the rswoaléx in turn
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Figure 7: Isocontours af andyr att —t, =172 372 402 422 452,872. Simulation foL. =1
andRe = 5000 without initial perturbation.

gets stretched by the bigger one and they merge togethet {sge= 172 andt = 192). This
event yields one strong helical vortex with a very unsteady behaviour.

SUMMARY

In this paper, we investigate the dynamics of three helical vortices with cespéneir helical
pitch. At large pitch, vortex merging occurs that bears many analogies wethvtvortex sys-
tem. The main difference lies in the structure of the axisymmetric state that isscawmely
a corona of vorticity that eventually diffuses smoothly towards a Gaussidexs At intermedi-
ate pitchL = 1.5, the system rotates slowly around the axis, and diffusive effects dtartima
dynamics. However, a slight shift of the initial vortex positions is able to té&ta the system.
At lower values ofL, an axisymmetric sheet may also form, but it is found unstable with respect
to am= 1 mode. By contrast, shifting the initial vortex position leads to a rapid destdlulisa
of the system, and grouping and merging events are observed. This kgeeiscpresumably
relevant in real turbine wakes where the nondimensional helical pitchthisrramall and large
perturbations are due both to incoming flow and rotor geometry.

The three-vortex system can thus reach various asymptotic states eiyanigetric, or
helical with one or two vortices depending on the Reynolds number and the tedicting
precise frontiers between the various regimes is not an easy task sbdbaunstability prop-
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Figure 8: Isocontours afy andyr att —t, = 82,122 142 162 172 192. Simulation fol. =1

andRe = 5000, starting from a state in which the vortex positions have been peaitbgban
amount 0.001.

erties at small pitch strongly depend on the vortex core size. Such seestaronstant in the
viscous regime, and the way they evolve in time is still an open question.
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