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INTRODUCTION

Many systems develop helical vortices in their wake (propellers, wind turbines, helicopters).
Such flows can be assumed, at least locally, to be helically symmetric, i.e invariant through
combined axial translation of distance∆z and rotation of angleθ = ∆z/L around the samez-
axis, where 2πL is a constant called the helix pitch. Analytical [1] and numerical [2] works
describing stationary vortices are mostly restricted to inviscid filaments and patches. Here, we
present results from a direct numerical simulation (DNS) code with built-in helical symmetry [4].
This code is able to simulate the viscous dynamics of distributed vorticity profiles,it contains
in a simple way the effects of 3D vortex curvature and torsion, and allows one to reach higher
Reynolds numbers when compared to a full 3D DNS.

In this framework, the long-time (or equivalently far-wake) dynamics of regularly spaced
helical vortices is investigated. In this article, we focus on the case of threeidentical vortices, and
simulate their dynamics as their pitch and Reynolds number is varied. This fundamental work is
indeed motivated by the case of wind turbine wakes, which are known to be dominated by helical
tip and root vortices. At rated wind velocity, the reduced pitchL of tip vortices is related [5] to
the rotor radiusR and to the tip-speed ratioλ (which is the ratio between the tangential blade-tip
velocity and the wind speed) byL/R =

√
2/(3λ ): for typical valuesλ = 5− 10, this yields

values as low as 0.05− 0.1, but smaller as well as far larger values can be reached for other
wind speeds. Typical Reynolds numbersRe = Γ/ν based on the circulationΓ of the vortices (ν
denotes the kinematic viscosity) are of several million. In these systems, the real flow conditions
are made far more complex because of the turbulent atmospheric boundarylayer and of coherent
structures possibly shed by an upstream turbine, especially in farms. Accurate modelling can
be improved if the vortex dynamics and the transition in such complex flows is understood at
a fundamental level, and this can be achieved only at the cost of severe simplifications. The
present study is done in this spirit. Here, the Reynolds number does not exceed 104, the effects
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of nonuniform incoming flow conditions are disregarded and, as a first step, the root vortices
are not taken into account. This allows us to focus on basic helical vortex interactions occuring
in this system. At largeL/R, a “classical” three-vortex merging takes place, which somewhat
resembles the twodimensional two-vortex merging. WhenL/R is reduced, it takes more and
more time for the vortices to merge, as their rotation speed around the system axis is slowed
down by self-induced vorticity effects. This phenomenon is explained by following the interplay
between vorticity and streamfunction in the co-rotating frame of reference [3], and tracking the
locus of hyperbolic points of the streamfunction. At lowL/R-values, typically less than 1, the
exponential instability described by Okulov [6,7] is obtained, resulting in various grouping and
merging scenarii at the nonlinear stage of evolution. At intermediateL/R-values of the order of
1, only viscous diffusion acts, resulting in a, slow, viscous type of merging.

Other types of instabilities which are fully threedimensional are not described within this
helical framework. The helical code run on a short period of time allows one to generate a
quasi-steady flow state which may then be used to investigate such instabilities.

NUMERICAL CODE WITH HELICAL SYMMETRY

Governing equations

A flow displayshelical symmetry of helix pitch 2πL along a given axis if its velocity field is
invariant under the combination of an axial translation of∆z and a rotation of angle∆z/L around
the same axis. The flow characteristics are identical along the helical linesθ − z/L = const.
L > 0 corresponds to a right-handed helix andL < 0 to a left-handed helix. A scalar field
is helically symmetric if it depends on only two space variablesr andϕ ≡ θ − z/L. Helical
symmetry for a vector fielduuu can be expressed as follows:

uuu = ur(r,ϕ, t)eeer(θ)+uϕ(r,ϕ, t)eeeϕ(r,θ)+uB(r,ϕ, t)eeeB(r,θ) (1)

where the orthonormal Beltrami basis (see fig. 1) is defined as

eeeB(r,θ) = α(r)
[

eeez +
r
L

eeeθ (θ)
]

, eeer(θ), eeeϕ(r,θ) = eeeB ×eeer (2)

with

α(r) =

(

1+
r2

L2

)− 1
2

, 0≤ α(r) ≤ 1. (3)

A general incompressible helical flow can be expressed with only two scalar fields as:

uuu = uB(r,ϕ, t) eeeB +α(r)∇ψ(r,ϕ, t)×eeeB (4)
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Figure 1: Local helical basis.

whereψ(r,ϕ, t) is a streamfunction. Its vorticity field can be expressed as follows:

ωωω = ωB(r,ϕ, t) eeeB +α∇
(

uB(r,ϕ, t)
α

)

×eeeB . (5)

The global field is given by the two scalar fieldsωB(r,ϕ, t) anduB(r,ϕ, t) : indeed the stream-
functionψ is slaved to both the component of vorticityωB and of velocityuB along the unit vector
eeeB by

ωB = −Lψ +
2α2

L
uB (6)

where the linear operatorL is a generalized Laplace operator:

L(·) =
1

rα
∂
∂ r

(

rα2 ∂
∂ r

(·)
)

+
1

r2α
∂ 2

∂ϕ2(·) . (7)

The dynamical equations can be thus formulated within a generalization of the standard 2D
ψ–ω method. The equation foruB reads as

∂tuB +NLu = V Tu (8)

where the nonlinear and viscous terms are given by

NLu ≡ eeeB · [ωωω ×uuu] ,

V Tu ≡ ν
[

L(
uB

α
)−

2α2

L
ωB

]

.
(9)

The equation forωB reads
∂tωB +NLω = V Tω (10)

where the nonlinear is given by

NLω ≡ eeeB ·∇× [ωωω ×uuu] , (11)
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and the viscous term by

V Tω ≡−ν eeeB ·∇× [∇×ωωω] = ν

[

L(
ωB

α
)−

(

2α2

L

)2

ωB +
2α2

L
L(

uB

α
)

]

. (12)

The boundary conditions are regularity conditions at the axis and potentialflow conditions at
the outer circular boundary. As variableϕ = θ − z/L is 2π-periodic, the numerical code uses
Fourier series along that direction, and second order finite differences in the radial direction. The
time advance is performed using second order backward discretisation ofthe temporal derivative.
Nonlinear terms appear explicitly through second order Adams–Bashforthextrapolation whereas
the viscous terms are treated implicitly. More details can be found in [4].

Here we simulate the evolution of three identical helical vortices of circulationΓ. Their
maximum vorticity is at distanceR0 from the axis, and are equally distributed along the az-
imuth. Each vortex has an initial small core sizea0 and a pitch 2πL. It would be possible to
make quantities dimensionless using the helix radiusR0 as space scale, quantityR2

0/Γ as time
scale. The physical problem would then depend on three dimensionless parameters, namely the
Reynolds numberRe = Γ/ν , and the two ratiosL/R0 anda0/R0. However, the problem can
be made generic and dependent only on two parameters if one considers the vortex dynamics
starting from asingular helical vortex of radiusR⋆, pitch L and core sizea⋆ = 0 at a certain
time origin, sayt⋆. Selecting different core sizesa0 as initial conditions for the simulation at
t = 0 then amounts to perform a shift oft⋆ to different points in the past. This procedure, com-
mon for rectilinear vortices in 2D vorticity dynamics, is extended here to helicalvortices. In
the following we thus adopt the quantitiesR⋆ andR2

⋆/Γ as space and time scales. The dynamics
is governed by the two parametersRe and the reduced pitch̄L ≡ L/R⋆. The initial condition at
t = 0 is arbitrarily chosen with core size ¯a0 ≡ a0/R⋆ = 0.2 and radiusR̄0 ≡ R0/R⋆ = 1. At the
very beginning of the simulation, the radius abruptly increases by less than 1% as the initial con-
dition is no equilibrium state. How the vorticity and velocity distributions are built and the time
t⋆ computed is explained in the following section. Hereafter, all quantities are dimensionless,
and, for sake of simplicity, we drop the bars above the corresponding variables.

Generic initial conditions for a set of helical vortices

When defining an initial condition with finite core size, it is thus important to ensure that this
state results from the time evolution of an initial singular helical vortex line. First,within the
helical symmetry, the conservation of vortex circulationΓ and axial momentumΠz leads to

∫

ωz dS = Γ ,
∫

rωθ dS =
R2

⋆Γ
L

. (13)

Let us choose the distributioñωB in the (r,ϕ) plane, which corresponds to a Gaussian helical
vorticity profile of sizea0 in a plane orthogonal to the singular filament. WhenL → ∞ such a
solution is an inviscid equilibrium which diffuses via diffusion from a singularfilament. When
L is finite it is an approximate inviscid equilibrium.
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In order to fully determine the flow field, it is necessary to determine the helicalvelocity
distributionuB. A possible initial condition is such thatuB/α = Γ/(2π L). This is the case when
the vorticity field is everywhere tangent to helical lines. In the inviscid framework, it is known
that it remains so. When viscosity is present, this does not hold anymore, and it can be shown
that a gradient ofuB/α is generated via viscous coupling betweenωB anduB. Let us define the
function f as

f (r,φ) ≡
uB

α
−

Γ
2π L

.

It can be established that in the limit of smallf , the following relationship holds:

f (r,ϕ) = −
2(t − t⋆)

L Re
αωB(r,ϕ) .

For the generation of the initial condition, we hence assumef to be proportional toαωB. We
then seek two normalisation constantsC andD such that

αωB = Cαω̃B and f = Dαω̃B .

These constants are obtained using the conservation laws (13). In order to compute the time
origin t⋆ corresponding to the singular vortex state, we use another conservationlaw linked to
the angular momentum:

∫

f dS = −
2(t − t⋆)

L Re
,

that directly yieldst⋆ when applied to the initial condition att = 0.
The computation is done on dimensionless variables henceΓ = 1, R0 = 1, a0 = 0.2. The

numerical domain is a disk of radiusRext = 3, meshed byNr ×Nθ grid points. For Reynolds
numberRe = 5000 and 10000, one chosesNr = 512 andNθ = 384. WhenRe = 1000, these
values can be reduced toNr = 256 andNθ = 192.

MERGING OF LARGE PITCH VORTICES

A typical case: L = 2, Re = 5000

In this section, we consider three helical vortices with large pitch, typicallyL ≥ 2, and describe
the merging process. Fig. 2 displays the helical vorticityωB and velocityuB/α components in
the z = 0 plane for several times during the simulation atL = 2 andRe = 5000. Also plotted
are the streamlines in the frame rotating with the vortex system, obtained as isocontours of the
co-rotating streamfunctionψR. These figures can be discussed in association to fig. 3a and 4a
which characterize the motion in thez = 0 plane of the point with maximum helical vorticity
ωB, more specifically its radial positionrmax(t) and its angular velocityΩ(t). In a first phase,
the vortices rotate (see snapshots att − t⋆ = 156) counterclockwise and grow in size through
viscous diffusion. Around a critical timet1 − t⋆ = 363, the vortices enter a second phase of
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Figure 2: Isocontours of (a)ωB (colored and filled) andψR (white lines) and (b)uB/α (colored
and filled) andψR, at t − t⋆ = 156,376,456,956. Simulation forL = 2 andRe = 5000.

the dynamics, namely a motion towards the center (see snapshots att − t⋆ = 376), while their
angular velocity drastically increases. As there is a continuous shift fromphase 1 to phase 2,
we use the geometrical construction shown on fig. 3a to definet1. As for the case of two-vortex
merging, the second phase stops when the vortices are at a certain distance from the center, here
for t− t⋆ ≈ 400. A third phase (400< t− t⋆ < 600) then begins with radial oscillations while the
vortices keep on expanding (see snapshots att− t⋆ = 456). This expansion leads to an azimuthal
overlap of the vortices and to an eventual axisymmetric corona of helical vorticity. This feature
is absent for two-vortex merging where a single central vortex is formed.A fourth phase then
begins (600< t − t⋆ < 816) where the maximum of vorticity inside the corona gently drifts
towards the axis, as the asymptotic state is Gaussian (fifth phase). This phenomenon is seen in
fig. 3a where a plateau without any oscillation is present as phase 4, whichhas no counterpart in
the case of two-vortex merging.

Influence of the Reynolds number

The influence of the Reynolds number on the dynamics is shown on fig. 3b. Increasing the
Reynolds number has several effects:

• Phase 1: the initial diffusion phase 1 is longer as viscous diffusion is diminished, and it is
observed from the simulations that the duration of this phase∆t1 = t1− t⋆ is proportional
to Re at a fixed value ofL.
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Figure 3: Radial positionrmax of the vorticity maximum as a function of timet − t⋆ (a) for
L = ∞,3,2.5,2 andRe = 5000, (b) forL = 2 andRe = 1000,5000,10000.

• Phase 2: it is seen that the distancermax(t2) at the end of the radial compression phase 2
weakly depends on the Reynolds number, and this phase is shorter for higher Reynolds
numbers.

• Phase 3: the frequency of the oscillations during phase 3 do not dependon the Reynolds
number, and they are less damped at highRe.

• Phase 4: the duration of this purely diffusive phase is directly proportional to the Reynolds
number.

Influence of the helical pitch

On fig. 3a, it can be seen that decreasing the pitchL from its infinite 2D value at constant
Reynolds numberRe has a marked slowdown effect on the merging process. One may be
tempted to attribute this slowdown process to the fact that the vortices rotate at aweaker an-
gular velocity asL is decreased, as depicted in fig. 4a. This reduced rotating speed comes from
the increasing role of the self-induced velocity which tends to make vortices rotate clockwise.
This effect is at the origin of the longer time scales observed asL is decreased, but not in a
straightforward fashion, as explained below.
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Figure 4: (a) Rotation rateΩ of the position of maximum vorticity with respect to timet − t⋆
for L = ∞,3,2,1.5,1,0.5 andRe = 5000. The circle denotes a state for which the maximum
vorticity is at this axis, a square denotes a symmetry breaking instability. (b) Squared core size
of individual vorticesa2 as a function of timet − t⋆ for L = ∞,3,2.5,2,1.5 andRe = 5000. The
dashed-line shows the 2D diffusion lawa2(t) = a2

0 +4 t/Re.

It should be first noticed that changingL has no significant effect on the time evolution of
the vortex core size during phase 1 (see fig. 4b). The evolution law remains close to the 2D one
a2(t) = a2

0 + 4 t/Re. Yet, the critical core sizea(t1) at which phase 2 begins increases asL is
decreased. An explanation can be found by recalling the way the twodimensional vortex merging
works in the two-vortex case: there, the convective merging phase 2 begins while a significant
amount of vorticity has escaped the closed atmosphere of the two vortices, and begins to form
filaments in the surrounding fluid. A similar scenario takes place here, as shown on fig. 5: at
critical timet1, vorticity has filled the atmosphere of the three vortices, and begins to escape into
the peripheral rotating fluid through the hyperbolic points of the corotating streamfunction such
as H1, because of viscous diffusion. The subsequent formation of filaments isbelieved to be
associated to the convective phase 2 whereby vortices are radially pushed towards the axis. It
has been shown [8] that, for different values ofL andRe, the pertinent parameter for convective
merging is not the ratioa/rmax, but rather the ratio between the core sizea and the distance
d ≡E1H1 between the vortex center and the outer hyperbolic point (see fig. 5). Now, asL is
decreased, the rotation speed decreases also, causing the hyperbolicpoints of the co-rotating
streamfunction to move away from the axis, i.e.d increases. It is observed from the simulations
that, at critical time, the ratioa/d remains near the value 0.54±0.05 for allL andRe (this value
is 0.36 for 2 helical vortices). Hence the critical core size increases together with d as L is
decreased, which makes phase 1 last longer.

Fig. 5 also shows the topology of the flow in the vicinity of the axis: contrarily to the two-
vortex case, a small central region is present, here of triangular shape. This structure seems
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Figure 5: Isocontours ofωB (colored and filled) andψR (white lines) forL = 2 andRe = 10000
near critical time before the convective phase 2. The streamline pattern displays two types of
hyperbolic points and two types of elliptic points.

robust — in the two-vortex case, we have here a single hyperbolic point [8] — since it prevents
the merging of the vortices at the end of the oscillation phase 3 (see fig. 2 att − t⋆ = 456).

DIFFUSIVE MERGING AT INTERMEDIATE PITCH

At intermediate pitchL ≈ 1.5, the rotation speed of the system is weak so that the hyperbolic
points such as H1 are situated far from the axis (typically at distancer > 2), so that neither
filamentation, nor convective merging occurs. The behaviour of the system is thus dominated
by viscous diffusion and successive vortices smoothly merge (fig. 6a),forming an axisymmetric
corona of vorticity at a radial distance from the axis of order unity, sincermax≈ 1.

INSTABILITY OF SMALL PITCH VORTICES

At small pitches, an array of helical vortices is known to be unstable [5,6] with respect to dis-
placement modes, a phenomenon responsible for the destabilisation of propeller and wind tur-
bine wakes. Okulov [6] showed that the critical pitch under which such instability occurs for the
three vortex case with zero core size isLc = 1.132. In the simulation atL = 1.5 of fig. 6a, the sys-
tem is a priori stable with respect to Okulov’s threshold. In order to checkthis, the simulation has
been launched for the same parameter values, with an initial perturbation on the position of the 3
vortices (one of them has been radially pushed by 0.001, and one other azimuthally displaced by
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Figure 6: (a) Isocontours ofωB and ψR at t − t⋆ = 260,560,660,960. Simulation forL =
1.5 and Re = 5000 without initial perturbation. (b) Isocontours ofωB and ψR at t − t⋆ =
261,361,461,661. Simulation forL = 1.5 andRe = 5000, starting from a state in which the
vortex positions have been perturbed by an amount 0.001.

0.001). The results are depicted in fig. 6b. It seems that an instability is active, and its effects are
felt from t − t⋆ = 300, causing two of the vortices to merge (see snapshot att − t⋆ = 361). After
an exchange of vorticity (see snapshot att − t⋆ = 461), the system adopts a stable configuration
with two thick-cored helices (see snapshot att − t⋆ = 661). One possibility is that the finite core
size significantly alters the instability threshold, but this remains to be ascertained.

At the pitch valueL = 1, the system should definitely be unstable. However, if no per-
turbation is initially set and the growth rate is small enough, the system may diffuse into an
axisymmetric helical sheet before the Okulov instability develops significantly.This is illus-
trated on fig. 7, up to timet − t⋆ = 572. It can be also observed that the newly formed sheet is
unstable with respect to an azimuthal perturbationm = 1 (see att − t⋆ = 402). This leads to a
destruction of the sheet (aroundt − t⋆ = 452) and the system asymptotically converges towards
one single helical vortex with a thick core (see att−t⋆ = 852). However, two reservations can be
made: (a) at larger Reynolds numbers, the instability may become active before the sheet forms,
(b) the restriction of the study to a helically symmetrical flow with fixedL presumably affects
the way the sheet destabilizes: an instability mode is selected, but other waveswith different
pitches may be more unstable.

If a perturbation of small amplitude is initially set on the system forL = 1, then the instability
is rapidly felt on the dynamics of the three vortices. This is illustrated on fig. 8,near time
t − t⋆ = 122. One of the helical vortices is then strongly stretched and merges with one of the
others (seet − t⋆ = 142 andt = 162.) This is reminiscent of the vortex grouping observed in
some experiments [9]. The subsequent evolution is also interesting: the smaller vortex in turn
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Figure 7: Isocontours ofωB andψR at t − t⋆ = 172,372,402,422,452,872. Simulation forL = 1
andRe = 5000 without initial perturbation.

gets stretched by the bigger one and they merge together (seet − t⋆ = 172 andt = 192). This
event yields one strong helical vortex with a very unsteady behaviour.

SUMMARY

In this paper, we investigate the dynamics of three helical vortices with respect to their helical
pitch. At large pitch, vortex merging occurs that bears many analogies with the two-vortex sys-
tem. The main difference lies in the structure of the axisymmetric state that is reached, namely
a corona of vorticity that eventually diffuses smoothly towards a Gaussian vortex. At intermedi-
ate pitchL ≈ 1.5, the system rotates slowly around the axis, and diffusive effects dominate the
dynamics. However, a slight shift of the initial vortex positions is able to destabilize the system.
At lower values ofL, an axisymmetric sheet may also form, but it is found unstable with respect
to am = 1 mode. By contrast, shifting the initial vortex position leads to a rapid destabilisation
of the system, and grouping and merging events are observed. This latter case is presumably
relevant in real turbine wakes where the nondimensional helical pitch is rather small and large
perturbations are due both to incoming flow and rotor geometry.

The three-vortex system can thus reach various asymptotic states either axisymmetric, or
helical with one or two vortices depending on the Reynolds number and the pitch. Predicting
precise frontiers between the various regimes is not an easy task, because the instability prop-
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Figure 8: Isocontours ofωB andψR at t − t⋆ = 82,122,142,162,172,192. Simulation forL = 1
andRe = 5000, starting from a state in which the vortex positions have been perturbed by an
amount 0.001.

erties at small pitch strongly depend on the vortex core size. Such sizes are not constant in the
viscous regime, and the way they evolve in time is still an open question.
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