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Abstract: We herein present a direct numerical simulation method aimed at describing the 
dynamics of helical vortices such as those developing in the wake of propellers and wind  
turbine or helicopter rotors. By enforcing a helical symmetry, the 3D incompressible  
Navier-Stokes equations are reduced to a 2D problem which we solve using a generalised 
vorticity/streamfunction formulation. In this framework, we simulate the viscous dynamics of 
one or several helical vortices and describe quasi-steady states as well as long-time (or far-wake) 
dynamics. In particular, several types of merging in the two helical vortex systems are identified. 

Keywords: vortex dynamics; vortex merging; helical vortices; Navier-Stokes equations; 
numerical simulation. 

Reference to this paper should be made as follows: Delbende, I., Rossi, M. and Piton, B. (2012) 
‘Direct numerical simulation of helical vortices’, Int. J. Engineering Systems Modelling and 
Simulation, Vol. 4, Nos. 1/2, pp.94–101. 

Biographical notes: Ivan Delbende completed his studies in Physics and Mechanics at the Ecole 
Normale Supérieure de Lyon (France) and did his PhD at the Ecole Polytechnique in the LadHyX 
Laboratory under the supervision of Patrick Huerre and Jean-Marc Chomaz. He is now an 
Assistant Professor at Université Pierre et Marie Curie (UPMC, Paris 6) and works in the fields 
of open flow instabilities and vortex dynamics in the laboratory LIMSI-CNRS at Orsay. 

Maurice Rossi completed his studies in Physics at the Ecole Normale Supérieure de Saint-Cloud 
(France) and did his PhD at Université Pierre et Marie Curie (UPMC, Paris 6) under the 
supervision of Gérard Iooss. He is now a Researcher at CNRS, UPMC and works in the fields of 
instabilities, vortex and lake dynamics in the Laboratory IJLRA in Paris. 

Benjamin Piton obtained his Master’s degree in Physics from Université Pierre et Marie Curie 
(UPMC, Paris 6). He is about to defend his PhD thesis (October 2011) in Fluid Dynamics. He is 
supervised by Ivan Delbende and Maurice Rossi at the Laboratory LIMSI – CNRS at Orsay, and 
is granted from UPMC. 

This paper is a revised and expanded version of a paper entitled ‘DNS of helical vortices’ 
presented at the 46th Applied Aerodynamics Symposium of the French Aeronatics and 
Astronautics Society, Orléans, 28th–29th March 2011. 

 



 Direct numerical simulation of helical vortices 95 

1 Introduction 

Rotating devices such as propellers, wind turbines, 
helicopter rotors are known to develop a system of helical 
vortices in their wake. These structures result from the rapid 
roll-up of the vorticity sheet continuously generated at the 
trailing edge of the rotating blades. Experiments show that 
they interact with the mean flow: the radius of helical tip 
vortices follows the expansion (resp. the contraction)  
of the fluid tube passing through the turbine (resp. the 
propeller) and becomes constant within a downstream 
distance comparable to the diameter of the rotating device. 
At this distance, the fluid system – apart from turbulent 
fluctuations – has locally become helically symmetrical, 
meaning that it is locally invariant through combined axial 
translation and rotation about the same axis. In most real 
situations, this property does not hold into the far wake: 
instabilities often develop and drive the system to a  
fully three-dimensional turbulent flow. In some cases, a 
bifurcation may lead to a completely different wake 
structure, as in the case of the vortex ring state in helicopter 
flight (Green et al., 2005). In all instances however, it is of 
great interest to have a reliable description of the reference 
helical flow at sufficiently high Reynolds number, so that its 
subsequent evolution can be predicted, for instance, by 
standard instability theory. 

Earlier descriptions of such helical vortex systems  
made use of the vortex-filament model. On one hand,  
Hardin (1982) gives an expression for the velocity field 
induced by a helical vortex filament on the surrounding 
fluid. This is useful to compute the angular velocity induced 
by this vortex onto another vortex of the wake (mutual 
induction). On the other hand, it is also necessary to 
evaluate the velocity induced by the vortex filament on 
itself (self-induction). This can be done either by the cutoff 
theory (Saffman, 1992) whereby the singularity of the 
filamentary Biot-Savart law is removed (Widnall, 1972; 
Moore and Saffman, 1972) or by directly removing the 
singularity on Hardin’s solution (Kuibin and Okulov, 1998). 
Further extensions to helical vortex tubes with finite core 
size have also been developed (Fukumoto and Okulov, 
2005). All these studies are aimed at analytically predict the 
motion of a helical vortex system with prescribed geometry 
(helix radius, helix pitch and, when necessary, vorticity 
distribution within the core). 

In the small core limit and in the inviscid framework, 
such solutions are known to be ‘shape-preserving’, meaning 
that they are stationary in a reference frame rotating at the 
angular velocity predicted for the system. When the core 
size is finite, the question is raised whether a given vorticity 
distribution may yield a stationary state or not. In a 
numerical study, Lucas and Dritschel (2009) recently 
answered this question for the particular case of inviscid 
helical vortex patches (uniform vorticity within the core) 
with prescribed helix radius and vortex core size. Note that 
the above studies are all strictly restricted to the inviscid 
framework, a condition for the existence of stationary 
motion without any forcing. 

As mentioned before, wake vortices form through  
the roll-up of the trailing vorticity sheet, and viscous 
diffusion eventually leads to continuous distributed vorticity 
distributions within the vortex cores, such as Gaussian. 
Moreover, a distribution of axial velocity may also be 
present, which has always been disregarded in the  
literature. The complexity of this general problem would 
lead to use a three-dimensional DNS code. However, the 
attainable Reynolds numbers are still moderate and  
long-time dynamics clearly out of reach with nowadays 
facilities. We present here an original numerical code aimed 
at describing the viscous dynamics of helical vortex 
systems, and more generally helically symmetrical flows  
by direct numerical simulation of the incompressible 
Navier-Stokes equations. The enforcement of the helical 
symmetry allows one to reduce the three-dimensional 
equations to a modified two- dimensional unsteady 
problem. The code thus takes into account 3D vortex 
curvature and torsion effects through the helical symmetry, 
but the resolution is of a 2D type, allowing for larger 
numbers of grid points and Reynolds numbers. 

The Navier-Stokes equations with helical symmetry  
are presented in Section 2. The numerical formulation  
is described in Section 3. Viscous quasi-steady states 
consisting in one or several helical vortices are presented in 
Section 4. Long-time (or equivalently far-wake) dynamics 
have also been investigated and different types for the 
merging of two helical vortices are presented in Section 5. 
Concluding remarks are given in Section 6. 

2 Navier-Stokes equations with helical symmetry 

A flow displays helical symmetry of helix pitch 2πL along a 
given axis when its velocity field is unaffected by an axial 
translation given by a length parameter Δz followed by a 
rotation of angle Δθ = Δz / L around the same axis as 
depicted in Figure 1. The flow characteristics remain 
invariant along the helical lines θ − z / L = const. L > 0 
corresponds to a right-handed helix and L < 0 to a  
left-handed helix. 

Figure 1 Right-handed helix of reduced pitch L (see online 
version for colours) 

2πL
Δθ

Δz

 

Denoting time by the variable t, an unsteady scalar field f(t) 
possesses helical symmetry if it depends only, besides time, 
on the two space variables r and ϕ ≡ θ − z / L instead of the 
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three coordinates r, θ and z. For a vector field u(t), helical 
symmetry means that it can be written as 
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where the orthogonal Beltrami basis (er, eϕ, eB), presented in 
Figure 2, is such that 
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Figure 2 Local helical basis (see online version for colours) 
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A general incompressible helical flow can be expressed 
with only two scalar fields as: 

( , , ) ( ) ( , , )B B Bu u r t e r r t eα= + ∇ ×ϕ ψ ϕ  (4) 

where uB(r, ϕ, t) is the velocity component along eB(r, θ) 

and ψ(r, ϕ, t) is a streamfunction. Note that the vorticity 
field can be expressed as follows: 
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The vorticity component along eB is linked to the 
streamfunction ψ as well as to uB by the following 
relationship 

22
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L
αω = − +Lψ  (6) 

where the linear operator L stands for 
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The total vorticity and velocity fields are thus given by only 
two scalar fields ωB(r, ϕ, t) and uB(r, ϕ, t). The 

streamfunction ψ(r, ϕ, t) is slaved to these variables through  
equation (6). 

In order to describe the flow evolution, we hence have 
to obtain two dynamical equations for quantities ωB(r, ϕ, t) 

and uB(r, ϕ, t). This formulation is a generalisation of the 

standard 2D ψ-ω method. Indeed the 3D Navier-Stokes 
problem for a helical symmetric flow can be reduced to a 
dynamical equation for uB(r, ϕ, t) and ωB(r, ϕ, t). The first 
equation reads as 

t B u uu NL VT∂ + =  (8) 

where the non-linear and viscous terms are given by 
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The dynamical equation for ωB reads 

t B NL VTω ωω∂ + =  (10) 

where the non-linear is given by 

[ ]   ,BNL e uω ω≡ ⋅∇ × ×  (11) 

and the viscous term by 
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More details can be found in Delbende et al. (2011). 

3 Numerical formulation 

As variable ϕ = θ − z / L is 2π-periodic, the fields can be 
expressed as Fourier series along that direction. We hence 
introduce the ‘azimuthal’ modes ( ) ( )( , ),  ( , )m m

B Bu r t r tω  and 
write equations (8) and (10) for each Fourier mode m (m is a 
positive integer). For the axisymmetric mode m = 0, the 
dynamical equations are written for the real Fourier  
modes (0) ( , )Bu r t  and (0) ( , ),u r tϕ  instead of (0) ( , ).B r tω  From 

quantities ( ) ( )( , ),  ( , )m m
B Bu r t r tω  for m ≠ 0, one obtains the 

values ψ(m)(r, t) for m ≠ 0 using equation (6) written for 
mode m: 

2
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B Bu

L
αω= − +L ψ  (13) 

where the operator L(m) is given by 
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together with the boundary conditions for ψ(m)(r, t). The 

time evolution of mode ( ) ( , )m
Bu r t  is governed by 
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As the viscous term VTu is a linear term, one directly 
obtains 
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There is no such simple expression for non-linear terms: 
NLu has to be first evaluated in the physical space and is 
then Fourier-transformed to yield ( ) .m

uNL  The time 

evolution for modes ( ) ( , )m
B r tω  with m ≠ 0 and mode 

(0) ( , )u r tϕ  is treated in a similar way. The code has been 
adapted from a pure 2D code written by Daube (1992). The 
time advance of any of these modes is performed using 
second order backward discretisation of the temporal 
derivative. Non-linear terms appear explicitly through 
second order Adams-Bashforth extrapolation whereas the 
viscous term has been made implicit. 

Boundary conditions should be also imposed for ( )m
Bω  

with m ≠ 0, ( )m
Bu  and (0) .uϕ  In addition to regularity 

conditions at r = 0, one should impose conditions at the 
outer boundary taken to be at r = Rext: 
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A boundary condition for (0)uϕ  is also imposed at the outer 
boundary. These conditions are described in a much more 
detailed way in Delbende et al. (2011). 

For spatial discretisation, two series of Nr grid points are 
defined in the radial direction: 
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where δϕ = 2π / Nθ. In physical space, quantities uB(r, ϕ, t), 

ωB(r, ϕ, t), ψ(r, ϕ, t) radial components ur(r, ϕ, t) and ωr(r, 

ϕ, t) are defined at points (i, j) (which stands thereafter for 

(ri, ϕj). Azimuthal components uϕ (r, ϕ, t) and ωϕ (r, ϕ, t) 
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Non-linear terms such as ( )m
uNL  are needed at points ri, 

so that we have to compute the non-linear terms NLu = (ω × 
u)B = ωr uϕ − ωϕ ur in physical space at points (i, j). To 
summarise, one needs to evaluate various quantities at 
different grid points: ωr uϕ, ωϕ ur at points (i, j), ωB ur at 

points 1( , ),
2

i j+  −ωB uϕ at points (i, j) and 2
Bu  at points  

(i, j). 
The resolution of the dynamical equations requires the 

radial discretisation of operators L(m), ( ) ( ),  m m
uVT VTω  at each 

radial location ri with 2 ≤ i ≤ Nr − 1. This is performed with 
a second order centred scheme: according to the dynamical 
equation considered, the resulting system has a tridiagonal, 
pentadiagonal or hexadiagonal structure, and is solved using 
a band LU factorisation of the LAPACK library. As each 
mode m is treated independently, parallel computing with 
shared memory can be most conveniently implemented. 

4 Quasi-steady helical vortices 

Here we simulate the evolution of a single helical vortex 
with small core size at a low pitch value. The initial profile 
is given by 
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In the above formulas and hereafter, quantities are 
dimensionless, scaled with the helix radius R as space scale, 
quantity R2 / Γ as time scale, where Γ is a typical vortex 
circulation. Here, Γ0 = π, r0 = (1, 0), a0 = 0.1 and we  
set the reduced pitch to L = 0.5. The Reynolds number is 
Re0 = Γ0 / ν = 1,000. The numerical simulation is performed 
with a domain of radial extent Rext = 2 meshed by Nr × Nθ 
grid points, where Nr = 512 and Nθ = 384. 

The temporal evolution of the helical vorticity 
component ωB is shown on Figure 3. At short times, small 
helical filaments are rapidly formed (t = 0.08, 0.012) and 
destroyed (t = 0.2, 0.4). Indeed, the vortex tube as a whole 
engenders a local strain. As the initial condition is not an 
inviscid equilibrium state, strain is not counterbalanced by 
advection. Similarly to the purely 2D vortex case subjected 
to an external strain, the vortex reaches equilibrium by 
emitting filaments at its boundary. Thereafter the vortex 
adopts a shape that remains nearly constant. For t > 0.4, it 
evolves on a slow time scale imposed by viscous diffusion 
and proportional to the Reynolds number. The helical vortex 
has thus reached a quasi-steady state when considered in a 
reference frame rotating with it at frequency ω. 
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Figure 3 Convergence of a single helical vortex with L = 0.5 towards a quasi-steady state: temporal evolution of the helical vorticity 
component ωB at Re0 = 1,000, viewed in a plane perpendicular to the helix axis (see online version for colours) 
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Note: The initial vortex is such that Γ0 = π,  
r0 = || r0 || = 1, a0 = 0.1. 

 
Figure 4 Angular velocity ω(t) of the helical vortex of Figure 3 

(see online version for colours) 
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Figure 5 Quasi-steady state for two vortices represented in 3D 
(see online version for colours) 
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Measuring the angular velocity ω(t) obtained by DNS and 
comparing with the theoretical value obtained by the cutoff 
theory (Saffman, 1992) is one of the validation  
tests of the numerical code. The cutoff results are here  
semi-analytical since they use the quantities core size a(t), 
distance rmax(t) from the axis and core circulation Γ(t) 
evolving in time and given by the DNS. The comparison is 
shown in Figure 4, and is found very satisfactory once the 
filaments have been destroyed and that the vortex has 
reached its quasi-steady state. 

It should be noted that vorticity isocontours in Figure 3 
are presented in a plane perpendicular to the z-axis: the 
curved/elongated shape adopted by the vortex for t ≥ 0.4 
corresponds in fact to a quasi-circular core shape when 
considered in an inclined plane perpendicular to the  
vortex tube. 

This can also be seen on Figure 5, presenting a  
quasi-steady state made of two helical vortices. In this 
snapshot, the 3D helical structure of the vortex has been 
materialised. It is clearly seen that the cores are indeed close 
to circular while they are strongly deformed in the bottom 
plane perpendicular to z. 

The numerical code thus makes it possible to obtain 
quasi-steady states of the Navier-Stokes equations with one 
or several helical vortices of given pitch. Note that the 
three-dimensional stability of these obtained solutions is not 
known since helical symmetry is enforced by the current 
formulation. Some states are stable, but other might be 
unstable with respect to perturbations breaking the helical 
symmetry. In this latter case however, the present numerical 
code is able to generate unstable basic helical flows that can 
be injected for instance in a fully three-dimensional code in 
order to determine various instability properties. This 
corresponds to future work. 

5 Merging of two helical vortices 

The above helical quasi-steady states evolve on a slow  
time scale associated to viscous diffusion. In the pure  
two-dimensional case (L = ∞), it is known that two identical 
vortices rotate around each other for a period of time 
proportional to Reynolds number (Josserand and Rossi, 
2007). Eventually, their mutual distance suddenly decreases 
and, after some rapid oscillations, vanishes, indicating that 
the vortices have merged. The distance of one of the 
vortices from the z-axis during this process is plotted in 
Figure 6 (curve L = ∞). The merging time for this 2D  
case is 575. 

Numerical simulations have been performed at the  
same Reynolds number Re0 = 10,000 but for helical  
vortices at finite L values. Figure 6 shows that decreasing L 
progressively slows down the process; at L = 3 the merging 
time is 600, and can reach values as high as 1,400 at L = 2 
(not shown). For the above values of L, the merging process 
is close to that occurring in the pure 2D case, as shown by 
the snapshots in Figure 7 (see two top rows). 

When L is lowered to the value 1.3, another type of 
merging is observed: as shown in Figure 7 (third row), the 
vortices gently come into contact at t = 2,610: the helical 
vortex cores have grown through viscous diffusion up to a 
point where turns belonging to the two distinct vortices 
touch. Viscous diffusion then drives the system to a 
cylindrical annulus of vorticity (see t = 4,400). Thus, for L 
values close to 1.3, a very slow, merely diffusive merging 
process takes place, which involves successive vortex turns. 
 

Figure 6 Merging of two helical vortices at Re0 = 10,000 for different values of L 
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Notes: Time evolution of the distance rmax of one of the vortices from the axis. Initial helices Γ0 = 1,  
r0 = 1, a0 = 0.2. 
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Figure 7 Snapshots of the helical vorticity component ωB during the merging of two helical vortices with pitch L at Re0 = 10,000  
(see online version for colours) 

 

Note: Time evolution of the distance rmax of one of the vortices from the axis. Initial helices are such that Γ0 = 1, r0 = 1, a0 = 0.2. 
 
For smaller values of L, the dynamics is again much 
different. In Figure 6, the curve rmax(t) relative to L = 0.8 is 
seen to become strongly erratic at some time (here near  
t = 300). Beside the helical symmetry, the two-vortex  
initial condition is invariant through the transformation  
ϕ → ϕ + π. For the largest investigated values of the 
reduced pitch (L ≥ 1.3), this additional symmetry is 
preserved during the whole simulation. By contrast, the 
dynamics for L = 0.8 plotted in Figure 7 (bottom row) 
shows that it can break at some time (see t = 350), and the 
two helical vortices interact in a complex way. Symmetry 
breaking causes the periodicity along the direction φ to 
change from its initial value π to the value 2π, and therefore 
the periodicity along the axial direction z also changes from 
πL to 2πL. The phenomenon has much in common with the 
subharmonic pairing instability of a row of straight vortices; 
here it involves two neighbouring turns and the patterns 

observed look similar to those obtained during the merging 
of two vortex rings (Riley and Stevens, 1992). Clearly the 
proximity of turns belonging to the two vortices at small L 
values is responsible for such interaction, and the structure 
resulting from their merging is a single helical vortex with 
large core size (see t = 500). 

6 Conclusions 

In this article, we present an original DNS code aimed at 
solving the Navier-Stokes equations for incompressible 
flow with helical symmetry. In this framework, the 
dynamics is governed by a set of three coupled equations 
for the helical components of vorticity ωB, of velocity uB 
and for the helical streamfunction ψ. The code is shown to 
give access to quasi-equilibrium states representing one or 
several helical vortices. The present code has several 
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advantages: while taking into account three-dimensional 
effects of curvature and torsion, the resolution is basically 
of the 2D type, which allows for finer grids, higher 
Reynolds numbers and longer integration times. For 
example, this allows one to investigate the long-time 
dynamics of merging of two identical helical vortices at  
Re0 = 10,000. It has been found that, at high values of the 
helix pitch (typically L ≥ 2), the merging process is similar 
to the one obtained in pure 2D dynamics, but occurs  
on larger time scales as L is progressively decreased.  
At intermediate values of the pitch (L ≈ 1.3), a slow 
diffusive-type of merging occurs between successive turns 
of the two-vortex system. At small values of the pitch 
(typically L ≤ 1), adjacent turns interact as in a subharmonic 
instability process while remaining helically symmetrical. 
Of course, this latter symmetry may not hold in a three-
dimensional framework, and some results of the present 
study should be confronted to fully 3D computations. 
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