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Université Pierre et Marie Curie UPMC Sorbonne Universités,
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Abstract

The influence of a resistive load on the starting performance of a standing-wave thermoacous-

tic engine is investigated numerically. The model used is based upon a low Mach number

assumption; it couples the two-dimensional nonlinear flow and heat exchange within the

thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For

a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean

pressure and prescribed load, results from a simulation in the time domain include the evo-

lution of the acoustic pressure in the active cell. That signal is then analyzed, extracting

growth rate and frequency of the dominant modes. For a given load, the temperature differ-

ence between the two sides is then varied; the most unstable mode is identified, and so is the

corresponding critical temperature ratio between heater and cooler. Next, varying the load,

a stability diagram is obtained, potentially with predictive value. Results are compared with

those derived from Rott’s linear theory as well as with experimental results found in the

literature.

PACS numbers: 43.35.Ud



p. 3

I. INTRODUCTION

A thermoacoustic engine is a device absorbing heat at the hot heat exchanger and re-

leasing heat at the cold heat exchanger while producing acoustic work as an output. Engines

are meant to carry a load, which in the case of an acoustic device, might include a thermoa-

coustic refrigerator1, a pulse tube refrigerator2, a (possibly linear) electric generator3 or a

piezoelectric transducer4. The strong coupling that will exist between the engine and the

load influences both starting performance and steady (periodic) operation.

Thermoacoustic devices have been studied extensively for more than 30 years. Most

of the work in the literature is based upon the linear theory, developed by Rott5 and later

extended by Swift et al.1;6. The theory can handle different geometries for the various parts of

the system, such as, stack, heat exchangers, ducts. Numerical implementation is based upon

a lumped element approximation7. The linear theory will then yield the acoustic field and

as a result, the performance of a given system when in the periodic regime1. Linear theory

can also predict the onset conditions (critical starting temperature gradient) as a function

of the mean pressure, by performing a stability analysis for a fixed geometry and working

fluid. Results from linear theory are in good agreement with experiments8;9;10 for the onset

of a standing wave thermoacoustic engine inside a resonator closed at both ends. Recently,

a completely analytical boundary layer theory extending linear theory was developed by

Sugimoto11;12, reducing the problem to a one dimensional model. That theory was then used

in an analytical stability analysis for systems with a stack under given temperature gradient

inside straight or looped resonators, for given acoustic frequency, without resorting to lumped

elements. Linear theory has important limitations: the stability analysis is performed in the

frequency domain for each mode; the transient regime is not described; non linear and

multidimensional effects are not considered or are only partially taken into account.

Transient regimes were addressed by de Waele13, who developed a one-dimensional

time-dependent model of a thermoacoustic Stirling engine taking into account the dynamics
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of individual components, again using a lumped-element approximation. De Waele studied

engine start phase and transient effects while acoustics is still considered linear. A mixed

empirical and theoretical one-dimensional model was developed by Guedra et. al14;15, based

upon a transmission matrix formulation, also assuming linear acoustics. The transmission

matrix is obtained experimentally from impedance measurements. Using that model, they

studied the onset of oscillations for both a basic standing wave engine and a traveling wave-

engine. None of these studies included the influence of a load on onset conditions.

In contrast, the influence of the load has been accounted for in studies of thermoa-

coustic devices in the periodic regime. The performance of a loaded thermoacoustic engine

was investigated by Olson et. al16, and also others17;18, using linear theory1 and the lumped

elements approximation. More recently, Hatori et al.19 developed an experimental method

based on measuring the acoustic impedance of the engine and of the load separately, and pre-

dicted the operating point of the combination engine plus load. Coming to nonlinear models,

some numerical simulations of the full compressible Navier-Stokes equations in loaded ther-

moacoustic devices with complicated geometry have been performed20;21. These simulations

were performed using commercial codes and gave good description of thermoacoustic engines

in the transient and periodic regime. However each test case required extremely large and

time consuming simulations; therefore these are not appropriate for a parametric study of a

variable load coupled with an engine.

The aim of the current work is to study the influence of a variable load on the marginal

stability conditions of a standing-wave thermoacoustic engine. The model used implements

a hybrid low Mach number approximation. It is based on coupling the two-dimensional

nonlinear flow and heat exchange in the thermoacoustic active cell with one-dimensional

linear acoustics in the loaded resonator. For a detailed description see Ref.22. In the load

model used in the present study, instantaneous acoustic pressure and velocity are assumed to

be in phase at the loaded end, and the load is thus reduced to a real scalar value measuring the

ratio of velocity over acoustic pressure. For a given engine geometry and a given temperature
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ratio between heater and cooler, numerical simulations of the active cell show that depending

on the load value, the engine will or will not start. From the numerical results, for any given

configuration, a critical temperature ratio is thus determined, corresponding to the onset of

thermoacoustic oscillations, together with the frequency of the corresponding, most unstable

mode. The analysis is performed using a time dependent non-linear model that takes into

account two-dimensional effects as well as multi-frequency content. Finally, the influence of

the load on the starting phase of the engine is discussed and the results are compared, both

with results derived from the linear theory and with Atchley’s experiments8, bringing new

insight on the engine-load coupling.

II. Physical model

A. Low Mach number approximation

The geometry consists of a long tube with length L̃res, within which an active cell is

placed, at a distance L̃L from the left end. The active cell consists of a stack of horizontal

Closed end

Resonator

Loaded endCooler

Resonator

StackHeater

Active cell

~
L
res

~

~
L
L

L
stack

Figure 1: Simplified geometry of a thermoacoustic engine.

solid plates with length L̃stack, placed between two heat exchangers also consisting of solid

horizontal plates that have the same periodicity as the stack (see Figure 1). The geometry

can then be reduced to a domain consisting of two half-plates plus the gap between them,
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plus a region that extends away from the solid plates.

First, a dimensionless coordinate system x̂ is introduced, that resolves the acoustic

aspect of the device, which is thus scaled by the resonator length L̃res. The inert resonator

end located at x̂ = −l̂L = −L̃L/L̃res is a closed end. The second resonator end consists of a

load placed at a fixed location x̂ = l̂R = 1 − l̂L, described in more detail below. The active

cell is positioned at x̂ = 0. It has negligible size when scaled by L̃res, as discussed below (see

Figure 2a).

Next, a different dimensionless coordinate system (x, y) is introduced, that characterizes

the active cell geometry, where lengths are scaled by the stack length L̃stack, in both x and

y. The corresponding dimensionless geometrical parameters include the vertical gap or flow

passage between two stack plates h, the stack porosity h/H, where H is the domain height,

equal to the vertical gap plus the thickness of one stack plate, the vertical gap between two

heat exchanger plates hx, the horizontal gap between heat-exchangers and stack Lxs, and

the heat-exchanger lengths Lhx and Lcx (see Figure 2b).

The low Mach number model is described in detail in previous work22. The model

assumes that the particle displacement spans a length of the order of L̃stack, hence typical

velocities of the order of Ũref = L̃stack/τ̃ , where τ̃ is of the order of the fundamental acoustic

period of the empty resonator, τ̃ = L̃res/c̃ and c̃ is the speed of sound. A reference Mach

number M = Ũref/c̃ can then be introduced which also equals M = L̃stack/L̃res. In the

following, the Mach number is assumed to be small or equivalently the stack is then taken to

be much shorter than the resonator. The active cell size is then negligible in the x̂ coordinate

system.

Flow in the resonator is then described by linear acoustics. The solutions are expressed

as a pair of planar traveling waves that move respectively left and right at the speed of

sound. The two Riemann invariants L(x̂, t) and R(x̂, t) are used, defined by

L = γu−
√
Tp′, R = γu+

√
Tp′ (1)
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Figure 2: Geometry of resonator (a) and of active cell geometry (b) in dimensionless coor-

dinates.

with γ the ratio of specific heats, u(x̂, t) the dimensionless gas velocity, T the dimensionless

temperature (using the cold temperature as a reference) which is assumed constant in each

resonator part (T = Th on the left side of the active cell, and T = Tc = 1 on the right side),

and p′(x̂, t) the dimensionless order M (acoustic) pressure (using the mean gas pressure

as a reference). At each tube end, the boundary condition results in a relationship that

determines the outgoing wave as a function of the incoming wave, as explained in22. The

order M pressure and acoustic velocity on both sides of the active cell (x̂ = 0±) are expressed

using these same quantities at previous times accounting for propagation on each side and
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reflections at the respective ends. The specific treatment of the loaded end will be described

in detail in the next section.

Flow in the active cell is described by two-dimensional Navier-Stokes equations, with

order M2 pressure gradients superimposed to a pressure spatially uniform up to order M ,

and varying density and temperature. The solid stack plate problem is described by the heat

conduction equation. In the stack and heat exchanger plates, physical properties such as

density, thermal conductivity, heat capacity are taken to be constant. Thermal conductivity

and heat capacity of the gas are also constant, with values corresponding to cold temperature,

chosen as the reference temperature. Reference density of the gas is that corresponding to

the reference (cold) temperature and the mean gas pressure.

At the solid-gas boundaries, continuity of temperature and heat flux are imposed, as

well as a no slip condition. In the heat exchangers, uniform, constant temperatures are

imposed with dimensionless values Tc = 1 in the cooler plates, Th > 1 in the heater plates.

Given the periodicity, open active cell boundaries are effectively adiabatic.

Boundary conditions at the open ends of the active cell are provided by appropriate

matching of the inner (active cell) and outer (resonator) solutions. The latter are expressed

using the Riemann invariants L and R defined by Eq. 1, traveling respectively left and right

in the resonator, at the speed of sound. At each extremity of the active cell, the outgoing

invariant is determined as a function of the incoming one, taking the corresponding resonator

boundary conditions into account. These consist respectively of a zero velocity at the closed

end, and the load described below in section B at the loaded end22. Finally, a global energy

balance over the active cell relates velocities at the two cell extremities to heat transfer.

From the standpoint of resonator acoustics, the active cell is transparent to pressure

but provides a source of volume. From the standpoint of the active cell, matching with

the resonator occurs at infinity so that, in principle, the active cell has infinite length on

both sides. However the numerical domain has to be finite. Its length is chosen equal to

5 times the stack length, which ensures proper matching, as confirmed by validation. The
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dimensionless parameters characterizing the problem are then the reference Mach number

M , the relative position of the active cell in the resonator l̂L, parameters describing the

geometry of the active cell (H, hs, hx, Lxs, Lhx, Lcx), a Péclet number Pe = ŨrefH̃/α̃ref

where α̃ref is the reference thermal diffusivity, a Reynolds number Re = ρ̃ref ŨrefH̃/µ̃ref , ρ̃ref

and µ̃ref being the reference density and viscosity, and the Péclet number Pes = Pe α̃ref/α̃s

in solid walls, where α̃s is the thermal diffusivity of the solid material.

B. Load model

The present study considers a purely resistive load, so that instantaneous acoustic

pressure p′(l̂R, t) and velocity u(l̂R, t) at the loaded end are assumed to be in phase. The

load is thus characterized by a scalar value equal to the ratio of dimensionless acoustic

pressure to velocity, i.e. f = p′(l̂R, t)/ u(l̂R, t), with f a positive real. Such a load behaves as

a pure resistance in the electrical analogy. Actual loads may include inertial and capacitance

effects; these will depend not only on mechanical design, but also on the driven devices. A

detailed study of these issues is beyond the scope of the present work.

The limit value f → 0 corresponds to an open end, with p′(l̂R, t) = 0, while the limit

value f → ∞ corresponds to a closed end, with u(l̂R, t) = 0.

The boundary condition at the load location x̂ = l̂R is carried along the returning

(left-moving) characteristic, resulting in the corresponding boundary condition at the right

end of the active cell, at x̂ = 0+. Specifically, the boundary condition at x̂ = 0+ relates the

current local value of the left-moving Riemann invariant and the value of the right-moving

Riemann invariant at the same location but at a previous time that differs by the round trip

time between the active cell and the load at the speed of sound
√
Tc:

L(0+, t) = ZR(0+, t− 2l̂R/
√

Tc) (2)

in which a real coefficient Z was introduced, defined as:

Z =
γ − f

γ + f
. (3)
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While f goes from zero for an open end to infinity for a closed end, Z has the finite span

from −1 for a closed end to +1 for an open end. Furthermore, the expression emphasizes

the particular value f = γ, for which Z vanishes, corresponding to a left-moving Riemann

variable with zero value, regardless of the right-moving variable, hence to a non-reflecting

load. If Z = 0, the solution no longer depends upon the length of the right side of the

resonator; such a load may be difficult to implement, and of little practical value, as results

below will confirm; however, that case still has some interest as it separates different regimes.

In the framework of the harmonic approximation, it is possible to relate f or Z to the

reflection coefficient at the loaded end hence to the standing wave ratio23. In that context

the absolute value of Z is equal to the modulus of the reflection coefficient. The limit values

Z = ±1 correspond to a pure standing wave in the resonator, while the limit case Z = 0

corresponds to a pure traveling wave moving from the active cell towards the load. Between

those limit cases, the wave is a combination of two waves traveling in opposite directions

with unequal amplitudes, i.e. neither standing or purely traveling. In the current study,

however, the effect of the load parameter on starting performance will be investigated in the

time domain with no a priori on the nature of the wave developing in the engine. Critical

temperature ratio between heater and cooler and starting frequencies will be analyzed by

varying the value of f in the range 0 to +∞. Results will be more conveniently shown as

functions of the coefficient Z in the range [−1, 1].

III. Numerical simulation

A. Algorithm

The problem in the active cell is solved numerically using a finite volume code22. Diffu-

sion is dealt with implicitly while advection is explicit. The scheme is second-order accurate

in space and in time. A fractional time step projection method adapted for variable density

is used to enforce continuity. The ADI algorithm is used to solve the Helmholtz equation for

time advance of temperature and velocities. A multigrid algorithm determines the pressure
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correction. Solutions of the coupled equations providing velocity boundary conditions and

acoustic pressure at the active cell location from resonator acoustics and energy balance are

appropriately integrated in the solution sequence22.

B. Procedure

Simulations account for a specific engine geometry, characterized by the reference Mach

number M , the relative distance of the active cell to the left end l̂L and the dimensions of the

active cell H, h, hx, Lx and Lxs. Most of the current results were obtained for Lxs equal to h.

Reference Péclet number Pe, solid Péclet number Pes, Reynolds number Re are maintained

constant. The evolution in time of the velocity and temperature fields is computed for given

heater and cooler temperatures and load. The required initial conditions consider fluid at rest

and temperature profiles, obtained numerically, corresponding to steady conduction in the

walls and in fluid at rest. Initial conditions also need being specified for resonator acoustics,

and these need being nonzero since the steady solution to the global problem consists of fluid

at rest, together with a stationary conduction solution. To that effect, and in order not to

favor specific modes, an initial random noise is imposed in the resonators. Small O (10−4)

random values are thus assigned to the Riemann invariants at the active cell entrance and

exit for a time window prior to zero, of length equal to the round trip time between active

cell and the respective resonator end.

Starting from initial conditions specified above, the velocity u(x, y, t), dynamic pressure

p(x, y, t), temperature T (x, y, t) and density ρ(x, y, t) fields are calculated inside the active

cell at each time step. Coupling at the active cell entrance and exit provides the velocity at

the entrance u(0−, t) and exit u(0+, t) of the active cell, as well as the value of the acoustic

pressure at the active cell location p′(0, t) at each time step. The velocity values at the

entrance and exit of the active cell serve as boundary conditions for velocity inside the

active cell. The order M acoustic pressure p′(0, t) which is included in the active cell model

only through boundary conditions is an outcome of the simulation. This quantity is analyzed
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here to characterize the device’s regime : motion damping or amplification.

C. Post-processing

Acoustic modes are characterized by amplitude and complex frequency, i.e. frequency

and growth rate. If the temperature ratio between heater and cooler is small, growth rates

are all negative i.e. the amplitudes of all modes decrease in time and motion stops. A critical

temperature ratio is obtained when one of the modes exhibits positive growth: instability oc-

curs and the device starts. In order to find the critical temperature ratio Tcrit = T̃hcrit/T̃c for

a given load, repeated simulations are performed for increasing values of the hot temperature,

until a first growth rate becomes positive.

The pressure signal p′(0, t) is analyzed to extract the growth rate and frequency of the

dominant modes, by fitting the signal to an approximation of the form:

p′(0, t) =
n∑

i=1

Aie
σit cos(ωit) +Bie

σit sin(ωit) (4)

where n is the desired number of modes, with typical value 4. The fitting uses a window that

includes m consecutive data points, collected after several reference periods have elapsed so

that a dominant exponential mode has emerged from the initial phase affected by initial

conditions. In Expression (4), σi is the growth rate of mode i, ωi is its angular frequency,

and Ai, Bi are amplitudes.

Fitting the (Ai, Bi, σi, ωi) coefficients is performed using an iterative two stage proce-

dure. Starting with an initial guess (σi, ωi), the (Ai, Bi) coefficients are determined by least

mean square error minimization, using the m data points. Then the (σi, ωi) coefficients are

obtained using a simplex algorithm. Iterations continue until the fit satisfies a given crite-

rion, with the quadratic error below some adequate lower bound. The whole procedure is

iterated until an error below 10−4 on (σi, ωi) is reached.
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IV. Results

A. Conditions

Numerical simulations were carried out on an existing prototype of thermoacoustic

engine22, with a ”short” thermoacoustic active cell inserted in a long resonator closed at

both ends. The engine is modeled as the simplified device introduced in Figure 2, assuming

acoustics is lossless in the resonators and concentrating all dissipation at the loaded end.

The working fluid is helium. The dimensions (resonator length, stack length, distance

between the left end and the active cell, plate spacing) and the conditions of the experiments,

such as mean pressure and cold temperature, are kept constant. The relevant dimensionless

parameters are summarized in Table 1, and the relevant fluid properties are summarized in

Table 2.

Numerical simulations were carried out using a regular two-dimensional mesh for the

active cell, with either 2048 × 32 or 4096 × 64 grid points. The simulation domain is long

enough to ensure that the flow velocity near the entrance and exit is parallel to the resonators.

The time step is adjusted in order to satisfy the numerical stability condition, with about

200 (coarse grid) to 2000 (fine grid) time steps per reference acoustic period. Typically only

60 min of CPU time are necessary for each numerical run (about 100 periods), such as the

one shown in Figure 3.

For given load value and given heater temperature, the time history of acoustic pres-

sure in the active cell was recorded from the computation. An example of the time signal is

shown in Figure 3(a). The first oscillations are rather erratic (details are not shown in Fig-

ure 3(a) and they depend upon initial conditions. The signal eventually becomes smoother

and amplitudes appear to correspond to a superimposition of exponentially varying modes.

The signal appears to remain multi-frequency. This is confirmed in Figure 3(b) which shows

the corresponding spectrogram. In the figure, the angular frequency is scaled by a reference

angular frequency ωref equal to the fundamental angular frequency of the empty resonator
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closed at both ends, filled with gas at a mean pressure P̃m and a temperature equal to the

cold temperature T̃c. At any given time, the power spectrum exhibits successive peaks cor-

responding to the resonant frequencies of the engine for the specific load value. As time

evolves, most modes are damped while some are amplified. A more accurate determination

of the frequencies and growth rates of the dominant modes is presented in the next section.

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0  100  200  300  400  500  600  700  800

p’
 

t

(a)

0 01
2

3
4

5
6

7
8

9
10

100

200

300

400

500

600

700

800

10−4

10−5

10−6

10−7

t

ω

ωref

Magnitude

(b)

Figure 3: (a) Typical time signal of acoustic pressure p′(0, t), and (b) (color online) associated

spectrogram (the magnitude is the square root of the power density spectrum). Z = 0.988.

Th = 1.08.
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B. Results at a given active cell location

First, the effect of the load on the critical temperature ratio is studied, for a single

active cell location.

Analyzing the pressure signal using the approach described in Section , the growth rate

and frequency of the four dominant modes are calculated, for a range of increasing values of

the temperature of the heater Th, for a given load f , until unstable modes appear. The most

unstable mode is identified as the first mode for which the growth rate σ goes from negative

to positive, as Th is increased. Plotting σ as a function of the dimensionless temperature Th

helps identifying the precise value of the critical temperature ratio, as Figure 4 shows. In

the vicinity of the critical value, σ varies nearly linearly with Th, and a precise determination

of the critical temperature ratio is obtained by interpolation. For example in Figure 4, the

critical temperature ratio is found to be Tcrit = 1.845.
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Figure 4: Growth rate of most unstable mode as a function of the hot exchanger temperature,

Z = −0.963.

Next, varying the load and reproducing the same procedure for each load value results

in a stability diagram (Figure 5) in the (Z, Th) plane showing stable and unstable zones.

The zones are separated by a stability curve connecting all the critical temperature ratios
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causing the engine to start. The region above the stability curve corresponds to instability.

Figure 5 shows a stability domain roughly delimited by a symmetrical triangle peaking at

Z = 0, when a semi-log scale is used.
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Figure 5: Stability diagram in the (Z, Th) plane, showing the stability curve −•−. The region

above the curve corresponds to instability.
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Figure 6: Angular frequency of the most unstable mode scaled by ωref , as a function of Z.

Figure 6 shows the angular frequency ω of the first mode to become unstable as a

function of Z. As |Z| decreases, the frequency of the most unstable mode is observed to
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increase. Although the general shape of the curve is approximately symmetrical as it is in

Fig. 5 for the critical temperature, the values of ω do not display any symmetry. Indeed,

critical modes near Z = −1 are of the closed-end type (multiples of λ/2) whereas critical

modes near Z = 1 are of the open-end type (odd multiples of λ/4). This results in distinct

sets of onset frequencies, as is further discussed and analyzed in Sections IV.C. and V when

commenting on Figures 7, 8 and 11.

For Z close to zero, Figure 5 shows a very large critical temperature ratio, too large

for being realistic. Likewise, frequencies become very high so that resolution, both of the

wavelength in space, and of the period in time, becomes quite poor. Furthermore, these

curves were obtained assuming constant viscosity and thermal conductivity conditions, which

is unrealistic at high temperature. These results are thus somewhat dubious, and therefore,

Figure 5 merely gives a qualitative picture for Z close to zero. While such numerical critical

temperature ratios may be of limited value, the conclusion is valid that in the vicinity of

Z = 0 the device will not start for any realistic temperature ratio (Th less than about 10),

all modes remaining stable.

C. Results varying the active cell location or configuration

The stability diagrams shown in Figures 5 and 6 can be used, for a given configuration,

to predict the critical temperature ratio and the dominant frequency as a function of the

load.

These diagrams are modified if the location of the active cell measured by l̂L is varied.

The stability curve becomes a stability surface, which can be used to predict the critical

temperature ratio for a given setup. For given load and heater temperature values, the

position of the active cell has to be within a certain region for the engine to start. For an

active cell outside this region, all modes are dampened and the engine will not start.

Figure 7 shows the growth rate of the fundamental mode and of the first harmonic as

a function of the active cell location for Z = −0.963 and Th = 1.2. It is found that if the
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active cell is positioned at 0.083 < l̂L < 0.12 the first harmonic is the most unstable mode.

In contrast, if it is placed at 0.12 < l̂L < 0.43 the fundamental mode is dominant. For

that parameter settings, the overall optimal position for starting performance is l̂L = 0.27,

for which the growth rate is maximum. Another way to address the issue is to determine

the active cell location for which the critical temperature ratio is minimum. Figure 8 shows

the value of the critical temperature ratio for varying active cell locations and for selected

load values. Figure 8(a) shows results for negative values of Z near Z = −1, in which case

both ends are closed. For each value of Z, there is one stack position that minimizes the

critical temperature ratio. The optimal position is approximately 0.25 for Z = −0.99. Since

the fundamental mode (the λ/2 mode) is the critical one in that region, this corresponds to

a stack located at λ/8 ≃ L̂res/4 as expected (L̂res = 1). As Z departs from Z = −1 the

wavelength increases so that the optimal position shifts towards the center of the resonator.

Figure 8(b) corresponds to positive values of Z, near Z = 1, for which the cold end

is open. The optimal position is approximately 0.16 for Z = 0.99. Now the first harmonic

(the 3λ/4 mode) is the critical mode in that range of stack locations. This corresponds to

a stack located at λ/8 ≃ L̂res/6 ≈ 0.17. For decreasing values of Z, below Z = 1, the

wavelength increases so that the optimal position again shifts towards the resonator center.

Note that here the active cell is located at l̂L ≤ 0.25. If the stack were placed further away,

the fundamental mode would become the critical one and the optimal position would shift

towards 0.5.

The effect of varying the distance between the heat exchangers and the stack Lxs was

also studied. In all previous cases the horizontal spacing Lxs was equal to the vertical

stack plate spacing h. Figure 9 shows the stability diagram for two other situations: for

heat-exchangers and stack in direct contact (Lxs = 0) and doubling the horizontal spacing

(Lxs = 2h). While placing the heat-exchangers and stack in contact together results in

significant reduction of the critical temperature ratio for all values of the load (potentially

leading to a significant increase in longitudinal conduction losses), the effect of doubling the
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Figure 7: Growth rates as a function of the active cell location for 0 < l̂L < 0.5, Z = −0.963,

Th = 1.2. −•− fundamental mode (the λ/2 mode), −∗− first harmonic mode (the λ mode).

spacing is insignificant. The nature of the critical modes will be discussed in the next section

(see comments of Figure 11 in Section V. below).

V. Comparison with the linear theory

In this section the critical temperature ratio associated to a given acoustic mode is

estimated following Rott’s linear theory5;24, which is outlined here using dimensional values

for the various parameters. Linear results were obtained for a slightly different configuration,

with same total resonator length, stack length and position of the stack center within the

resonator as above. However the detailed heat exchanger geometry used above was replaced

by imposing a linear wall temperature profile in the stack and constant mean temperatures

T̃h on the left side of the stack, and constant mean cold temperature T̃c on the right side.

The flow in the resonator tubes left and right of the stack was taken as one-dimensional

isentropic linear acoustics with different speeds of sound corresponding to the respective

temperatures T̃h and T̃c. The boundary conditions on the left and right ends were the

same as previously, with a load modeled as a real impedance R̃ relating acoustic velocity

and acoustic pressure. The acoustic pressure and velocity amplitudes (p̃′h(x̃), ũh(x̃)) on the
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Figure 8: Stability diagram showing the critical temperature ratio as a function of the active

cell location for (a) −−�−− Z = −0.99, −∗− Z = −0.92, −•− Z = −0.85, the critical mode is

the fundamental mode (λ/2), and (b) −•− Z = 0.79, −∗− Z = 0.90, −−�−− Z = 0.99, the critical

mode is the first harmonic (3λ/4).

left resonator part and (p̃′c(x̃), ũc(x̃)) on the right resonator part are functions of position

which can be expressed simply in terms of two unknowns, namely the complex maximum

amplitudes Ũh and Ũc.
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Figure 9: Stability diagram in the (Z, Th) plane, showing the stability curve (critical tempera-

ture ratios) for three distances between heat-exchangers and stack, −−�−− Lxs = 0,−•− Lxs = h,

−∗− Lxs = 2h. (a) −1 < Z < −0.6, (b) 0.6 < Z < 1.

The stack region is described as a two-dimensional channel of height 2ỹ0 equal to the

vertical distance between stack plates, extending from x̃ = 0 to x̃ = L̃stack. Following Rott’s

approach, solutions of the viscous flow equations are sought for as harmonic functions in time

with angular frequency ω̃, using a boundary layer approximation and integrating vertically
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over the channel height. Also, the stack is assumed to be acoustically compact, so that the

acoustic pressure amplitude p̃′ is homogeneous through the stack. Since temperature varies

linearly through the stack,
dT̃

dx̃
is a constant.

The resulting dimensional equation for the acoustic velocity in Fourier space is25:

dũ1

dx̃
− f̃κ − f̃ν

(1− f̃ν)(1− Pr)

1

T̃

dT̃

dx̃
ũ1 = − iω̃

γP̃m

[
1 + (γ − 1)f̃κ

]
p̃′ (5)

where P̃m is the gas mean pressure, Rott’s factors are defined as

f̃ν =
tanh

[
(1 + i)ỹ0/

√
2µ̃/(ρ̃ω̃)

]
(1 + i)ỹ0/

√
2µ̃/(ρ̃ω̃)

, f̃κ =

tanh

[
(1 + i)ỹ0/

√
2k̃/(ρ̃c̃pω̃)

]
(1 + i)ỹ0/

√
2k̃/(ρ̃c̃pω̃)

(6)

with constant gas properties µ̃ , c̃p, k̃ (therefore the Prandtl number Pr is constant also) and

density ρ̃ depending on position through variation of temperature. The f̃ν and f̃κ factors

are functions of x̃. Equation 5 is a first order linear inhomogeneous equation, so that the

solution is expressed as :

ũ1(x̃) = exp

[∫ x̃

0

f̃κ(x̃1)− f̃ν(x̃1)

(1− f̃ν(x̃1))(1− Pr)

1

T̃ (x̃1)

dT̃

dx̃1

dx̃1

]
×{

C1 −
∫ x̃

0

iω̃

γP̃m

[
1 + (γ − 1)f̃κ(x̃1)

]
p̃′exp

[
−
∫ x̃1

0

f̃κ(x̃2)− f̃ν(x̃2)

[1− f̃ν(x̃2)](1− Pr)

1

T̃ (x̃2)

dT̃

dx̃2

dx̃2

]
dx̃1

}
(7)

in which C1 is an integration constant.

That expression can be rewritten using the relationship between position and temper-

ature, as:

ũ1(x̃) = exp

[
−
∫ T̃h

T̃ (x̃)

f̃κ(θ)− f̃ν(θ)

[1− f̃ν(θ)](1− Pr)

1

θ
dθ

]
×{

C1 +

∫ T̃h

T̃ (x̃)

iω̃

γP̃m

[
1 + (γ − 1)f̃κ(θ)

]
p̃′exp

[∫ T̃h

θ

f̃κ(θ
∗)− f̃ν(θ

∗)

[1− f̃ν(θ∗)](1− Pr)

1

θ∗
dθ∗

]
L̃stack

T̃c − T̃h

dθ

}
(8)

Boundary conditions are provided by matching with resonator acoustics. While the

resonator acoustics yield velocities uniform transversally, the boundary layer model incorpo-

rated in the linear theory used in the stack results in a specific nonuniform velocity profile.
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Matching the mean velocities values is justified based upon a multiple length approach simi-

lar to that used above. Indeed the transition region is small compared with acoustic lengths,

so that mass and pressure corrections due to the transition zone occur at higher order.

For known boundary conditions at the outer resonator ends, acoustics yield a relationship

between acoustic pressure in the stack, p̃′, and the uniform acoustic velocities Ũh and Ũc,

respectively on the left and right side. Continuity conditions require mean velocities and

acoustic pressure to match at both stack ends.

Requiring the resulting globally homogeneous problem to have non-trivial solutions

results in a dispersion relation that cannot be solved in closed form for the complex frequency

ω. A numerical solution was thus implemented using a shooting method, integrating over

the stack length, and iterating until the relationship between pressure and velocity at the

end match the acoustic boundary condition. The method requires an initial guess for the

complex frequency, conveniently provided by the numerical results of section .

Figures 10 and 11 show a comparison between numerical results and results obtained

using the linear theory. Only the range |Z| > 0.6 is shown, which contains all cases of

practical interest.

In Fig. 10, the critical temperature ratio is shown as a function of Z. There is very good

agreement between the two approaches, with the ratio obtained through the linear theory

slightly above the numerical values, which may be ascribed to a shorter length for lossless

acoustics in the linear approach. As Z → −1, the critical temperature ratio becomes very

close to one. For instance, for Z = −0.997, the critical temperature ratio is found to be

Tcrit = 1.024 numerically while linear theory gives Tcrit = 1.14. Similarly for an almost open-

end resonator, Z = 0.998, numerical simulations yield a value Tcrit = 1.025, vs. Tcrit = 1.13

from linear theory.

In Fig.11, the onset frequency normalized by ωref is shown as a function of Z for

both approaches, showing again excellent agreement. Also plotted (continuous lines) are the

resonant frequencies of a lossless resonator with a temperature discontinuity positioned at
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x̂ = 0, for hot temperature Th set to the critical value Tcrit(Z) determined by the simulation,

for a closed right end in Fig. 11(a) or an open right end in Fig. 11(b). The small frequency

increase as Th increases is barely noticeable on the continuous (nearly horizontal) lines. The

load itself has a small effect since the points from both numerical results and linear theory,

and the points on the horizontal lines, which only take into consideration the changes in

temperature due to Z, but not the values of Z itself only differ slightly. However the most

visible effect of the load is the switch in the first mode to become unstable (and thus of

the onset frequency), represented by vertical lines on Fig. 11. In Figure 11(a), each vertical

range corresponds to a multiple of λ/2, and in Figure 11(b), each vertical range corresponds

to an odd multiple of λ/4. As |Z| diminishes, progressively higher frequency modes are the

first to become unstable. For the current configuration, |Z| has to be extremely close to one

for a fundamental mode to be the first to become unstable. The results, both numerical and

from linear theory, show that as |Z| decreases, the wavelengths of each mode increase. Thus

the position within the resonator maximizing power shifts away from the closed end, for

each mode. Hence the optimal position of the active cell for destabilizing any mode (λn/8,

n = 1, 2, 3, ...) shifts to the right, as was already shown on Figure 8. Mode n will remain the

most unstable until λn/8 of the nth mode shifts too far away from the active cell location

and λn+1/8 of the next mode becomes more favorably located, resulting in step increases in

the frequency of the most unstable mode as shown in Fig. 11.

VI. Comparison with experimental results

In this section, numerical results from the current model are compared with the ex-

perimental results of Atchley et al.8. The experimental setup consists of a thermoacoustic

cell that is about 6.5 cm long, with a 3.5 cm long stack, inserted inside a one meter long

resonator closed at both ends, at about one tenth of its length, 0.87 m from the right end26.

The inner radius of the resonator is 1.91 cm. Here its cross-sectional area is denoted by

A. The only ”load” on the engine is dissipation in the gas contained in the resonator (he-
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Figure 10: Stability diagrams in the (Z, Th) plane, showing critical temperature ratios, •

Numerical simulation, −−− Linear theory. (a) −1 < Z < −0.6; (b) 0.6 < Z < 1.

lium under pressure, initially at ambient temperature). The experiments8 show that at low

mean pressure the most unstable mode is the first harmonic, while at higher pressure the
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Figure 11: Frequency of the most unstable modes vs. Z. � linear theory, × simulations,

(a) −1 < Z < −0.6; −−− resonant frequencies of a closed-closed lossless resonator with

temperature discontinuity at x̂ = 0 and Th = Tcrit(Z) determined by numerical simulations,

−−− approximate vertical separation between modes (multiples of λ/2), (b) 0.6 < Z < 1,

−−− resonant frequencies of an open-closed lossless resonator with temperature discontinuity

at x̂ = 0 and Th = Tcrit(Z), − − − approximate vertical separation between modes (odd

multiples of λ/4).



p. 27

fundamental mode becomes the most unstable. There is also a region where both modes are

unstable.

For comparison, simulations were thus performed for several mean pressure values. One

of the model assumptions is that acoustics is lossless in the resonators, so that all dissipation

is due to the load, while the experimental results8 were obtained with no load but with losses.

For comparison, the load value in the present model was identified such that the critical

temperature ratio obtained by simulation matches the experiment. For P̃m = 0.44 MPa, it is

found that a dimensionless load value of f = 45 in the present model yields a critical heater

temperature that coincides with the value obtained experimentally T̃h = 660 K. That value

corresponds to a dimensional resistive load value R̃ = fMP̃m/(AŨref ) = 17.1 MPa·s·m−3.

The mode that becomes unstable is the fundamental mode, which is also consistent with

the experiments. As the heater temperature is increased in the simulation while keeping the

load value constant, the first harmonic also becomes unstable when T̃h = 821 K, which is

again in agreement with the value T̃h ≃ 800 K found in the experiment.

For P̃m = 0.15 MPa, a load value f = 16 is necessary to reproduce the measured critical

heater temperature T̃h = 718 K, corresponding to dimensional value R̃ = 2.1 MPa·s·m−3. For

that mean pressure value, the mode that first becomes unstable is the first harmonic, again

in the experiments as well as in the present simulations. The load value that matches the

experimental stability diagram of Atchley et al.8, shown in Figure 12, is found to depend only

on the mean pressure. In the electro-acoustic analogy, the cold resonator in the experimental

configuration is a simple right-ended duct filled with helium prone to viscous and thermal

dissipation. In the present model, the lossless resonator is connected to a purely resistive load,

which is found to mainly play the role of a thermal resistance. Indeed the thermal resistance

in the experiment may be estimated based on the classical expression1, Rκ = 2γP̃m/[ω(γ −

1)Sδκ], where S is the surface area of the resonator side and δκ the thermal boundary-layer

thickness. If P̃m = 0.44 MPa (resp. 0.15 MPa), T̃cold = 293 K, the thermal resistance is

found to be of the order of 40 MPa·s·m−3 (resp. 5 MPa·s·m−3). For P̃m=0.15 MPa, the
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Figure 12: Dimensional load R̃ yielding critical temperatures of Atchley et al.8, vs. mean

pressure P̃m.

angular frequency corresponds to the first harmonic, since this is the mode that destabilizes

first. These values are found to be in qualitative agreement with the above mentioned values

R̃ obtained numerically, thus lossless acoustics with a loaded end can adequately model a

dissipative resonator. Moreover, the value of the load strongly influences the ability of the

thermoacoustic engine to start on its own.

VII. Conclusion

The dynamics of a thermoacoustic engine was investigated numerically for varying mean

pressure and temperature ratio between heater and cooler. The model is based upon a low

Mach number assumption, leading to a combination between a numerical solution of the flow

and heat transfer the active cell and an analytical solution of linear acoustics in the resonator.

Numerical simulations were carried out on existing thermoacoustic engine configurations22;26,

showing how a resistive load influences the onset of thermoacoustic oscillations.

The resistive load was varied to encompass a full range of situations from a resonator

with closed end to open end, hence values from infinity to zero. To that effect, for a large

number of load values, the critical temperature ratio was determined, as well as the angular
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frequency of the most unstable mode. Results show that for a wide range of intermediate

load values, the critical temperature ratio is so high that in practice the engine will not start

on its own.

The active cell consisted of a stack of parallel plates placed between heat exchangers

also made of plates aligned with the stack plates. For that simple configuration, comparison

was possible between the numerical results and a theoretical analysis based on Rott’s linear

theory. Good agreement was found for both the critical temperature ratio and the dominant

oscillation frequency. The hybrid numerical model will be most useful whenever realistic

active cell with complex geometry must be dealt with, for example for misaligned plates, or

even for fully three-dimensional configurations.

The current model of a lossless resonator associated to a resistance placed at the res-

onator end can be extended to describe real loads to which the thermoacoustic engine is

coupled. The approach used also allowed to account for dissipation in a simple experimental

resonator with closed end8, provided the resistive load value is adequately chosen. In that

case, the load is mainly associated to the thermal resistance of the resonator.
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Table 1: Dimensionless parameters characterizing the reference experimental device22

M Pe Pes Re l̂L H h/H hx/H Lhx Lcx Lxs

0.02 1100 4900 1600 0.09 0.007 0.73 0.73 0.05 0.05 0.005
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Table 2: Fluid properties in reference experiment22

Helium gas

P̃m T̃c ρ̃ µ̃ c̃p k̃

MPa K kg ·m−3 Pa · s J · kg−1K−1 W ·m−1K−1

1.0 293 1.6 2.10−5 5193 0.15
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Figure Captions

Figure 1. Simplified geometry of a thermoacoustic engine.

Figure 2. Geometry of resonator (a) and of active cell geometry (b) in dimensionless coor-

dinates.

Figure 3. (a) Typical time signal of acoustic pressure p′(0, t), and (b) (color online) associated

spectrogram (the magnitude is the square root of the power density spectrum). Z = 0.988.

Th = 1.08.

Figure 4. Growth rate of most unstable mode as a function of the hot exchanger temperature,

Z = −0.963.

Figure 5. Stability diagram in the (Z, Th) plane, showing the stability curve −•−. The region

above the curve corresponds to instability.

Figure 6. Angular frequency of the most unstable mode scaled by ωref , as a function of Z.

Figure 7. Growth rates as a function of the active cell location for 0 < l̂L < 0.5, Z = −0.963,

Th = 1.2. −•− fundamental mode (the λ/2 mode), −∗− first harmonic mode (the λ mode).

Figure 8. Stability diagram showing the critical temperature ratio as a function of the active

cell location for (a) −−�−− Z = −0.99, −∗− Z = −0.92, −•− Z = −0.85, the critical mode is

the fundamental mode (λ/2), and (b) −•− Z = 0.79, −∗− Z = 0.90, −−�−− Z = 0.99, the critical

mode is the first harmonic (3λ/4).

Figure 9. Stability diagram in the (Z, Th) plane, showing the stability curve (critical tempera-

ture ratios) for three distances between heat-exchangers and stack, −−�−− Lxs = 0,−•− Lxs = h,

−∗− Lxs = 2h. (a) −1 < Z < −0.6, (b) 0.6 < Z < 1.

Figure 10. Stability diagrams in the (Z, Th) plane, showing critical temperature ratios, •

Numerical simulation, −−− Linear theory. (a) −1 < Z < −0.6; (b) 0.6 < Z < 1.

Figure 11. Frequency of the most unstable modes vs. Z. � linear theory, × simulations,

(a) −1 < Z < −0.6; −−− resonant frequencies of a closed-closed lossless resonator with
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temperature discontinuity at x̂ = 0 and Th = Tcrit(Z) determined by numerical simulations,

−−− approximate vertical separation between modes (multiples of λ/2), (b) 0.6 < Z < 1,

−−− resonant frequencies of an open-closed lossless resonator with temperature discontinuity

at x̂ = 0 and Th = Tcrit(Z), − − − approximate vertical separation between modes (odd

multiples of λ/4).

Figure 12. Dimensional load R̃ yielding critical temperatures of Atchley et al.8, vs. mean

pressure P̃m.
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