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1 Introduction

Rotating devices such as propellers, wind turbines,
helicopter rotors are known to develop a system of
helical vortices in their wake. These structures re-
sult from the rapid roll-up of the vorticity sheet con-
tinuously generated at the trailing edge of the ro-
tating blades. Experiments show that they interact
with the mean flow : the radius of helical tip vor-
tices follows the expansion (resp. the contraction)
of the fluid tube passing through the turbine (resp.
the propeller) and becomes constant within a down-
stream distance comparable to the diameter of the
rotating device. At this distance, the fluid system —
apart from turbulent fluctuations — has locally be-
come helically symmetrical, meaning that it is locally
invariant through combined axial translation and ro-
tation about the same axis. In most real situations,
this property does not hold into the far wake : insta-
bilities often develop and drive the system to a fully
three-dimensional turbulent flow. In some cases, a
bifurcation may lead to a completely different wake
structure, as in the case of the vortex ring state in
helicopter flight [1]. In all instances however, it is of
great interest to have a reliable description of the
reference helical flow at sufficiently high Reynolds
number, so that its subsequent evolution can be pre-
dicted, for instance, by standard instability theory.

Earlier descriptions of such helical vortex systems
made use of the vortex-filament model. On one
hand, Hardin [2] gives an expression for the velocity
field induced by a helical vortex filament on the sur-
rounding fluid. This is useful to compute the angular
velocity induced by this vortex onto another vortex
of the wake (mutual induction). On the other hand,
it is also necessary to evaluate the velocity induced
by the vortex filament on itself (self-induction). This
can be done either by the cutoff theory whereby
the singularity of the filamentary Biot–Savart law
is removed [3, 4] or by analytical developments on
Hardin’s solution [5]. Further extensions to helical
vortex tubes with finite core size have also been de-
veloped [6]. All these studies are aimed at analyt-
ically predict the motion of a helical vortex system

with prescribed geometry (helix radius, helix pitch
and, when necessary, vorticity distribution within the
core).

In the small core limit and in the inviscid framework,
such solutions are known to be “shape-preserving”
meaning that they are stationnary in a reference
frame rotating at the angular velocity predicted for
the system. When the core size is finite, the question
is raised whether a given vorticity distribution may
yield a stationary state or not. In a numerical study,
Lucas & Dritschel [7] recently answered this ques-
tion for the particular case of inviscid helical vor-
tex patches (uniform vorticity within the core) with
prescribed helix radius and vortex core size. Note
that the above studies are all strictly restricted to the
inviscid framework, a condition for the existence of
stationary motion without any forcing.

As mentionned before, wake vortices form through
the roll-up of the trailing vorticity sheet, and vis-
cous diffusion eventually leads to continuous dis-
tributed vorticity distributions within the vortex cores,
such as Gaussian. Moreover, a distribution of ax-
ial velocity may also be present, which has al-
ways been disregarded in the literature. The com-
plexity of this general problem would lead to use
a three-dimensional DNS code. However, the at-
tainable Reynolds numbers are still moderate and
long-time dynamics clearly out of reach with nowa-
days facilities. We present here an original numeri-
cal code aimed at describing the viscous dynamics
of helical vortex systems, and more generally heli-
cally symmetrical flows by direct numerical simula-
tion of the incompressible Navier–Stokes equations.
The enforcement of the helical symmetry allows one
to reduce the three-dimensional equations to a mod-
ified two-dimensional unsteady problem. The code
thus takes into account 3D vortex curvature and tor-
sion effects through the helical symmetry, but the
resolution is of a 2D type, allowing for larger num-
bers of grid points and Reynolds numbers.

The Navier–Stokes equations with helical symme-
try are presented in section §2. The numerical for-



mulation is described in section §3. Viscous quasi-
steady states consisting in one or several helical
vortices are presented in section §4. Long-time (or
equivalently far-wake) dynamics have also been in-

vestigated and different types of merging of helical
vortices are presented in section §5. Concluding re-
maks are given in section §6.

2 Navier–Stokes equations with helical symmetry

A flow displays helical symmetry of helix pitch 2πL
along a given axis when its velocity field is unaf-
fected by an axial translation given by a length pa-
rameter ∆z followed by a rotation of angle ∆θ =
∆z/L around the same axis as depicted in figure 1.
The flow characteristics remain invariant along the
helical lines θ − z/L = const. L > 0 corresponds
to a right-handed helix and L < 0 to a left-handed
helix.

2πL
∆θ

∆z

FIGURE 1 – Right-handed helix of reduced pitch L.

A scalar field f possesses helical symmetry if it de-
pends only on the two space variables r and ϕ ≡
θ − z/L instead of the three coordinates r, θ and z.
For a vector field u, helical symmetry means that it
can be written as

u = ur(r, ϕ, t)er(θ)
+ uϕ(r, ϕ, t)eϕ(r, θ)
+ uB(r, ϕ, t)eB(r, θ)

(1)

where the orthogonal Beltrami basis (er, eϕ, eB),
presented in figure 2, is such that

eB(r, θ) = α(r)
[

ez +
r

L
eθ(θ)

]

,

eϕ(r, θ) = eB × er = α(r)
[

eθ(θ)−
r

L
ez

] (2)

with quantity α(r) defined as

α(r) =

(

1+
r2

L2

)− 1
2

, 0 ≤ α(r) ≤ 1 . (3)

φ ≡ θ − z/L = cst
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FIGURE 2 – Local helical basis.

A general incompressible helical flow can be ex-
pressed with only two scalar fields as :

u = uB(r, ϕ, t) eB + α(r)∇ψ(r, ϕ, t)× eB (4)

where uB(r, ϕ, t) is the velocity component along
eB(r, θ) and ψ(r, ϕ, t) is a streamfunction. Note that
the vorticity field can be expressed as follows :

ω = ωB(r, ϕ, t) eB + α∇

(

uB(r, ϕ, t)

α

)

× eB . (5)

The vorticity component along eB is linked to the
streamfunction ψ as well as to uB by the following
relationship

ωB = −Lψ +
2α2

L
uB (6)

where the linear operator L stands for

L(·) =
1

rα

∂

∂r

(

rα2 ∂

∂r
(·)

)

+
1

r2α

∂2

∂ϕ2
(·) . (7)

The total vorticity and velocity fields are thus given
by only two scalar fields ωB(r, ϕ, t) and uB(r, ϕ, t).
The streamfunction ψ(r, ϕ, t) is slaved to these vari-
ables through equation (6).
In order to describe the flow evolution, we hence
have to obtain two dynamical equations for quan-
tities ωB(r, ϕ, t) and uB(r, ϕ, t). This formulation is
a generalization of the standard 2D ψ–ω method.



Indeed the 3D Navier–Stokes problem for a heli-
cal symmetric flow can be reduced to a dynami-
cal equation for uB(r, ϕ, t) and ωB(r, ϕ, t). The first
equation reads as

∂tuB + NLu = VTu (8)

where the nonlinear and viscous terms are given by

NLu ≡ eB · [ω × u] ,

VTu ≡ ν

[

L(
uB

α
)−

2α2

L
ωB

]

.
(9)

The dynamical equation for ωB reads

∂tωB + NLω = VTω (10)

where the nonlinear is given by

NLω ≡ eB ·∇× [ω × u] , (11)

and the viscous term by

VTω ≡ −ν eB ·∇× [∇×ω]

= ν

[

L(
ωB

α
)−

(

2α2

L

)2

ωB

+
2α2

L
L(

uB

α
)

]

.

(12)

3 Numerical formulation

As variable ϕ = θ − z/L is 2π-periodic, the fields
can be expressed as Fourier series along that di-
rection. We hence introduce the “azimuthal” modes
u
(m)
B (r, t), ω

(m)
B (r, t) and write equations (8) and (10)

for each Fourier mode m (m is a positive integer).
For the axisymmetric mode m = 0, the dynami-
cal equations are written for the real Fourier modes

u
(0)
B (r, t) and u

(0)
ϕ (r, t), instead of ω

(0)
B (r, t). From

quantities u
(m)
B (r, t), ω

(m)
B (r, t) for m 6= 0, one ob-

tains the values ψ(m)(r, t) for m 6= 0 using equation
(6) written for mode m :

L
(m)ψ(m) = −ω

(m)
B +

2α2

L
u
(m)
B (13)

where the operator L
(m) is given by

L
(m)(·) =

1

rα

∂

∂r

(

rα2 ∂

∂r
(·)

)

−
m2

r2α
(·) , (14)

together with the boundary conditions for ψ(m)(r, t).

The time evolution of mode u
(m)
B (r, t) is governed by

∂tu
(m)
B + NL

(m)
u = VT

(m)
u . (15)

As the viscous term VTu is a linear term, one directly
obtains

VT
(m)
u = ν

[

L
(m)(

u
(m)
B

α
)−

2α2

L
ω
(m)
B

]

. (16)

There is no such simple expression for nonlinear
terms : NLu has to be first evaluated in the phys-
ical space and is then Fourier-transformed to yield

NL
(m)
u . The time evolution for modes ω

(m)
B (r, t) with

m 6= 0 and mode u
(0)
ϕ (r, t) is treated in a similar

way. The code has been adapted from a pure 2D

code written by O. Daube [8]. The time advance of
any of these modes is performed using second or-
der backward discretisation of the temporal deriva-
tive. Nonlinear terms appear explicitly through sec-
ond order Adams–Bashforth extrapolation whereas
the viscous term has been made implicit.
Boundary conditions should be also imposed for
ωB

(m) with m 6= 0, uB
(m) and uϕ

(0). In addition to reg-
ularity conditions at r = 0, one should impose condi-
tions at the outer boundary taken to be at r = Rext :

ωB
(m)(Rext) = 0, uB

(m)(Rext) = 0 for m 6= 0,

u
(0)
B (Rext) = α(Rext)

(

U∞
z +

Γ

2π L

)

. (17)

A boundary condition for uϕ
(0) is also imposed at

the outer boundary. These conditions are described
in a much more detailed way in [9].
For spatial discretization, two series of Nr grid points
are defined in the radial direction :

∣

∣

∣

∣

∣

ri = (i− 1)δr
r+i = ri+ 1

2
= ri + δr/2 (i = 1, · · · ,Nr) ,

where δr = Rext/(Nr − 1) and only one set of Nθ

grid points in the azimuthal direction :

ϕj = j δϕ (j = 0, · · · ,Nθ − 1), ϕNθ
= ϕ0 = 0 ,

where δϕ = 2π/Nθ. In physical space, quanti-
ties uB(r, ϕ, t), ωB(r, ϕ, t), ψ(r, ϕ, t), radial compo-
nents ur(r, ϕ, t) and ωr(r, ϕ, t) are defined at points
(i, j) (which stands thereafter for (ri, ϕj)). Azimuthal
components uϕ(r, ϕ, t) and ωϕ(r, ϕ, t) live at points
(i+ 1

2 , j).

Nonlinear terms such as NL
(m)
u are needed at points

ri, so that we have to compute the nonlinear terms
NLu = (ω × u)B = ωr uϕ − ωϕ ur in physical
space at points (i, j). To summarize, one needs to



evaluate various quantities at different grid points :
ωr uϕ, ωϕ ur at points (i, j), ωB ur at points (i+ 1

2 , j),
−ωB uϕ at points (i, j) and u2B at points (i, j).
The resolution of the dynamical equations re-
quires the radial discretization of operators L

(m),

VT
(m)
u ,VT

(m)
ω at each radial location ri with 2 ≤ i ≤

Nr − 1. This is performed with a second order cen-

tered scheme : according to the dynamical equa-
tion considered, the resulting system has a tridiag-
onal, pentadiagonal or hexadiagonal structure, and
is solved using a band LU factorization of the LA-
PACK library. As each mode m is treated indepen-
dently, parallel computing with shared memory can
be most conveniently implemented.

4 Quasi-steady helical vortices

Here we simulate the evolution of a single helical
vortex with small core size at a low value of the re-
duced pitch L = 0.5. The initial profile is given by

ωB =
Γ0

πa20
exp[−(r− r0)

2/a20] , (18)

and
uB

α
=

Γ0

2π L
, (19)

with Γ0 = π, r0 = (1, 0), a0 = 0.1. The Reynolds
number is set to Re = Γ0/ν = 1000. The numeri-
cal simulation is performed with a domain of radial

extent Rext = 2 meshed by 512× 256 grid points.

The temporal evolution of the helical vorticity com-
ponent ωB is shown on figure 3. At short times,
small helical filaments are rapidely formed (t =
0.08, 0.012) and destroyed (t = 0.2, 0.4). Thereafter
the vortex adopts a shape that remains nearly con-
stant. For t > 0.4, it evolves on a slow time scale
imposed by viscous diffusion and proportional to
the Reynolds number. The helical vortex has thus
reached a quasi-steady state when considered in a
reference frame rotating with it at frequency ω.
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FIGURE 3 – Convergence of a single helical vortex towards a quasi-steady state : temporal evolution of the
helical vorticity component ωB at Re = 1000. The helix pitch is set to L = 0.5 and the initial helical vortex is
such that Γ0 = π, r0 = ||r0|| = 1, a0 = 0.1
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FIGURE 4 – Angular velocity ω(t) of the helical vor-
tex of figure 3. Comparaison between DNS and
semi-analytical cutoff theory.

Measuring the angular velocity ω(t) obtained by
DNS and comparing with the theoretical value ob-
tained by the cutoff theory is one of the validation
tests of the numerical code. The cutoff results are
here semi-analytical since they use the quantities
core size a(t), distance rmax(t) from the axis and
core circulation Γ(t) evolving in time and given by
the DNS. The comparison is shown in figure 4, and
is found very satisfactory once the filaments have
been destroyed and that the vortex has reached its
quasi-steady state.
It should be noted that vorticity isocontours in fig-
ure 3 are presented in a plane perpendicular to the
z-axis : the curved/elongated shape adopted by the
vortex for t ≥ 0.4 corresponds in fact to a quasi-
circular core shape when considered in an inclined
plane perpendicular to the vortex tube.
This can also be seen on figure 5, presenting a

quasi-steady state made of two helical vortices. In
this snapshot, the 3D helical structure of the vor-
tex has been materialised. It is clearly seen that
the cores are indeed close to circular while they are
strongly deformed in the bottom plane perpendicu-
lar to z.
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FIGURE 5 – Quasi-steady state for two vortices rep-
resented in 3D. L = 0.5.

The numerical code thus makes it possible to obtain
quasi-steady states of the Navier–Stokes equations
with one or several helical vortices of given pitch.
Note that the three-dimensional stability of these
obtained solutions is not known since helical sym-
metry is enforced by the current formulation. Some
states are stable, but other might be unstable with
respect to perturbations breaking the helical sym-
metry. In this latter case however, the present nu-
merical code is able to generate unstable basic he-
lical flows that can be injected for instance in a fully
three-dimensional code in order to determine vari-
ous instability properties. This corresponds to future
work.

5 Helical vortex merging

The above helical quasi-steady states evolve, as al-
ready mentionned, on a slow time scale associated
to viscous diffusion. In the pure two-dimensional
case (L = ∞), it is known that two identical vor-
tices rotate around each other for a period of time
proportional to Reynolds number [10]. Eventually,
their mutual distance suddenly decreases and af-

ter some rapid oscillations vanishes, indicating that
the vortices have merged. The distance of a maxi-
mum of vorticity from the z-axis during this process
is plotted in figure 6 (leftmost curve). Note that it
is made nondimensional using the initial separation
distance between the two maxima of vorticity so that
rmax(0) = r0 = 0.5.
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FIGURE 6 – Merging of two helical vortices at Re = 10000 for different values of L. Time evolution of the distance
rmax of one of the vortices from the axis. Initial helices Γ0 = 1, r0 = 0.5, a0 = 0.1.

Numerical simulations have been performed at the
same Reynolds number Re = 10000 but for helical
vortices at finite L values. The figure 6 shows that
decreasing L progressively slows down the process,
since at L = 1 the merging time has roughly doubled
with respect to the 2D case L = ∞.
Figure 6 reveals another phenomenon : as L is fur-
ther decreased (on the figure for L = 0.5) the curve
rmax(t) drastically changes. Near time t = 380, its
behaviour becomes strongly erratic. Figures 7 and 8
show the time evolution of the helical component
ωB of vorticity for L = 1 and L = 0.5 respec-
tively. The case L = 1 resembles the pure 2D case
L = ∞, however with the major difference that the
vortex after merging is found to be strongly ellipti-
cal (t = 325) and seems to remain so for a long
time : at t = 425, for instance, it still has got al-
most the same shape (since it is centered on the
z-axis, this is no oblique cut artefact). Beside the
helical symmetry, the two-vortex initial condition is
invariant through the transformation ϕ → ϕ + π. For

the largest investigated values of the reduced pitch
(L ≥ 1), this additional symmetry is preserved dur-
ing the whole simulation. By contrast, the dynamics
for L ≤ 0.5 plotted in figure 8 shows that it can break
at some time : one of the two helical vortices comes
“inside” the other (see t = 385) and thereafter their
interaction becomes complex. Symmetry breaking
causes the periodicity along the azimuthal direction
θ to change from its initial value π to the value 2π,
and therefore the periodicity along the axial direction
z also changes from πL to 2πL. The phenomenon
has much in common with the subharmonic pair-
ing instability of a row of straight vortices or of vor-
tex rings. The merging process at low L ≤ 0.5 in-
volves two neighbouring spires and is very similar to
the merging of two vortex rings [11] while at higher
L ≥ 1 it involves facing helical vortices. As a conse-
quence, the merged structure is a screwdriver type
of helical vortex at low L (not shown), while at higher
L, it is a twisted elliptical vortex centered at the ori-
gin (see figure 7 at t = 425).
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FIGURE 7 – Snapshots of the helical vorticity component ωB during the merging of two helical vortices with
L = 1 at Re = 10000. Initial helices are such that Γ0 = 1, r0 = 0.5, a0 = 0.1.
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FIGURE 8 – Snapshots of the helical vorticity component ωB during the merging of two helical vortices with
L = 0.5 at Re = 10000. Initial helices are such that Γ0 = 1, r0 = 0.5, a0 = 0.1.



6 Concluding remarks

In this paper, we present an original DNS code
aimed at solving the Navier–Stokes equations for
incompressible flow with helical symmetry. In this
framework, the dynamics is governed by a set of
three coupled equations for the helical components
of vorticity ωB, of velocity uB and for the helical
streamfunction ψ. The code is shown to give ac-
cess to quasi-equilibrium states representing one or
several helical vortices. The present code has sev-
eral advantages : while taking into account three-
dimensional effects of curvature and torsion, the
resolution is basically of the 2D type, which allows
for finer grids, higher Reynolds numbers and longer

integration times. For example, this allows one to in-
vestigate the long-time dynamics of merging of two
indentical helical vortices at Re = 10000. It has been
found that, at high and moderate values of the helix
pitch, the merging process is similar to the one ob-
tained in pure 2D dynamics. By contrast, for smaller
values of the pitch, merging also occurs but in a
quite different fashion : adjacent spires interact two
by two as in a subharmonic instability process while
remaining helically symmetrical. Of course, this lat-
ter symmetry may not hold in a three-dimensional
framework, and some results of the present study
should be confronted to fully 3D computations.
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