
PHYSICS OF FLUIDS VOLUME 10, NUMBER 11 NOVEMBER 1998
Nonlinear convective/absolute instabilities in parallel two-dimensional
wakes

Ivan Delbende and Jean-Marc Chomaz
LadHyX, CNRS-UMR 7646, E´ cole Polytechnique, 91128 Palaiseau Cedex, France

~Received 11 February 1998; accepted 2 July 1998!

The linear versus nonlinear convective/absolute instability of a family of plane wake profiles at low
Reynolds number is investigated by numerically comparing the linearized and the fully nonlinear
impulse responses. Through an analysis of the linear flow response obtained by direct numerical
simulation ~DNS!, the linear temporal and spatiotemporal instability properties are retrieved, in
excellent agreement with the properties obtained by Monkewitz@Phys. Fluids31, 3000~1994!# from
the study of the associated viscous dispersion relation. Nonlinear terms are then shown to limit the
amplitude to a saturation level within the response wave packet, while leaving the trailing and
leading edges unaffected. For this family of open shear flows, the velocities of the fronts, formed
between the trailing or leading edge and the central saturated region, are thus selected according to
the linear Dee and Langer criterion@Phys. Rev. Lett.50, 383~1983!#, whereas the front solutions are
fully nonlinear. This property may be of importance in justifying the use oflinear instability
properties to predict the onset and the frequency of the von Ka´rmán vortex street, as determined by
Hammond and Redekopp@J. Fluid Mech.331, 231~1997!#. © 1998 American Institute of Physics.
@S1070-6631~98!01710-3#
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I. INTRODUCTION

Front propagation in spatially extended systems occ
whenever two states with different stability properties co
ist in contiguous spatial domains. The associated pattern
lection problem is then tantamount to the determination
the behavior of the front separating these two domains. F
selection has been recently investigated in Taylor–Coue1

and Rayleigh–Be´nard2 systems with small throughflow from
a weakly nonlinear point of view. Our goal in the prese
study is to extend these investigations to highly unsta
open shear flows where fully nonlinear effects are predo
nant, in order to discriminate between linear and purely n
linear mechanisms for the spreading of the saturated s
The study is conducted in the context of plane parallel w
flows, where the determination of the front-selection mec
nism is of great importance in predicting the critical thres
old and the characteristics of the von Ka´rmán vortex street.

Open shear flows such as heated or low-density je3,4

and bluffbody wakes5 are known to sustain self-excited o
cillations in a certain range of parameters. This resona
phenomenon is now commonly described by resorting to
concepts of linear convective/absolute instabilities and g
bal modes.6 The most celebrated example of such a behav
is provided by vortex shedding past two-dimensional bl
bodies: the flow distortion induced by the presence of a c
inder in the flow gives rise to the so-called Be´nard–Kármán
vortex street as soon as the Reynolds number Re(D) based on
diameter and free-stream velocity exceeds the critical va
ReG

(D);47.
This spectacular phenomenon has been ascribed

Mathis, Provansal, and Boyer5 to a supercritical Hopf bifur-
cation toward a limit cycle. Since then, many attempts h
been made to link this global description to the local ins
2721070-6631/98/10(11)/2724/13/$15.00
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bility properties at each streamwise location. Monkewi7

has determined the convective/absolute nature of the in
bility for a family of profiles with different shear layer thick
nesses@see Eq.~2!# pertinent to the description of bluffbod
wakes. Through a careful fit of experimental data measu
at the location of greatest reverse flow intensity, he was a
to describe the qualitative changes that occur as the Reyn
number Re(D) is increased from zero. As summarized in F
1, a transition from local stability to convective instabilit
first occurs at Re(D);5, then from convective to absolut
instability at Re(D);25. However, the latter transition has n
experimental trace, as it is based on a fictitious parallel
derlying basic flow.6 The global bifurcation toward Ka´rmán
vortex shedding eventually takes place at Re(D);47. This
vision is corroborated by the numerical study of Hannema
and Örtel.8 These authors simulated the basic wake flow a
determined the local instability properties in order to d
criminate between the shedding-frequency selection crit
proposed by several investigators.9–11 It was found that a
substantial region of the near wake is absolutely unstabl
the onset of vortex shedding. The finding is qualitative
consistent with the model studies by Chomaz, Huerre,
Redekopp,12 Le Dizès et al.,13 and Pieret al.:14 absolute in-
stability is a prerequisite for the occurrence of global osc
lations, but it is not sufficient. This explains why the glob
instability threshold is usually located at higher control p
rameter values than the local instability threshold~Fig. 1!.

Above the onset of vortex shedding, the growth of t
global mode is well described by a Stuart–Landau model
supported by the experiments of Provansal, Mathis a
Boyer5 and Schumm, Berger, and Monkewitz:15 the weakly
nonlinear formalism appears to faithfully describe the wa
dynamics even ‘‘unreasonably’’15 far above the global insta
bility threshold for values of the bifurcation paramet
4 © 1998 American Institute of Physics

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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(Re(D)2ReG
(D))/Re(D) of order unity. More recently, Ham

mond and Redekopp16 systematically investigated symmetr
and asymmetric wakes past a blunt edged plate with or w
out blowing and suction. The properties of vortex shedd
were predicted accurately via a numerical approach wit
the framework of the weakly nonparallel17 approximation:
the mean flow was obtained by direct numerical simulat
and the local linear instability properties were determined
each downstream locationX. The values of the linear growth
rate and shedding frequency were determined by ana
continuation in the complexX plane at the dominant sadd
point of the complex absolute frequencyv0(X).

That linear theory accounts so well for the wake dyna
ics is surprising for two main reasons. First, the flow
strongly nonparallel and the commonly used WKBJ appro
mation may legitimately be questioned. Second, the fl
near global instability onset is highly unstable in a subst
tial region of the wake as a result of the gap existing betw
local and global instability thresholds~Fig. 1!: nonlinear ef-
fects are thus already strong when Re(D) is close to ReG

(D) , as
illustrated on Fig. 2 in the context of the cylinder-wake e

FIG. 1. Local versus global instability properties of the two-dimensio
cylinder wake. S: stable, C: existence of a convective instability pocket
existence of an absolute instability pocket, G: globally unstable. Grey a
denote instability.
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periment performed by Le Gal and Croquette.18 In the sub-
critical regime, a small perturbation of the cylinder cause
wavepacket to grow, form a saturated vortex street which
ultimately advected downstream, as the system is below
global instability threshold. The passive tracer is stron
and rapidly displaced, indicating the presence of stron
nonlinear effects linked to the high local instability in th
near-wake.

When strong nonlinearities intervene, linear convecti
absolute instability concepts shoulda priori be replaced by
their nonlinear counterparts.19 Both linear and nonlinear
theories are outlined below.

Linear spatio-temporal instability properties are bas
on the behavior of the linear impulse response of the flow
a given reference frame. If the flow is unstable, any localiz
pulse develops along thex ~streamwise! direction into a
wave packet of spatio-temporal modes which grow expon
tially along some raysx/t5v and decay along other rays. I
most situations, the unstable modes are delineated by a
of particular raysx/t5v6 or ‘‘edges’’ along which neutral
waves propagate. The knowledge of the edge velocitiesv6

allows us to discriminate between convective and abso
instabilities~see Huerre and Monkewitz6 for a review!. If v2

andv1 have the same sign~say positive!, the linear response
decays at each fixed location, indicating a convective type
instability. If by contrastv2 is negative andv1 is positive,
the spatio-temporal rayx/t50 lies in the range of exponen
tially growing modes, which indicates an absolute type
instability.

The extension of these concepts to the nonlin
régime19 involves the evolution of localized perturbations

l
:

as
eriment by

Le Gal and
FIG. 2. Streakline of a passive tracer visualizing the impulse response in a cylinder wake at several times. In this waterfall presentation of an exp
Le Gal and Croquette,18 time is running from the bottom to the top picture by regular step increases. The Reynolds number Re(D)535 is subcritical, but local
instability causes a finite-amplitude wave packet to develop in space and time. The passive scalar is strongly and rapidly displaced. Courtesy of
Croquette.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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finite amplitude. The generated wave packets may then
bounded by two fronts of fixed shape propagating at velo
ties v6

NL . By analogy with the linear case, the instability
nonlinearly absolute if a wave packet exists for whichv2

NL

and v1
NL have opposite signs. Otherwise, it is nonlinea

convective.
The relation between linear and nonlinear convecti

absolute instability notions is nontrivial and can be asso
ated with the concept of front-velocity selection, which h
been extensively studied in the past decade.20–22 Consider a
small-amplitude perturbation initially localized within an u
stable medium~Fig. 3!. Initially, the disturbance grows ac
cording to linear instability theory, and its edges propagat
the linearly selected velocitiesv6 . As the exponential
growth becomes compensated by nonlinear terms, the w
packet saturates while the linear edges transform into non
ear fronts. Dee and Langer23 have proposed a ‘‘margina
stability’’ mechanism, also interpreted as a dynamical p
cess for linear front-velocity selection by van Saarloos,21 in
which the fronts of the nonlinear wave packet simply prop
gate at the same speed as the linear precursor edgesv6

NL

5v6), as sketched in Figs. 3~a! and 3~b!. This mechanism is
based on the assumption that the infinitesimal perturbat
preceding the front necessarily comply with the linear d
persion relation and dictate the entire front dynamics. N
ertheless, in some situations, the wave packet satura
causes a different front with higher velocity to emerge,
shown by van Saarloos.22 The selection is then said to b
nonlinear, as it is imposed by the nonlinear saturated regi
In the case of nonlinear velocity selection, which maya pri-
ori occur for the leading and/or the trailing front, the nonli
early selected front velocityv6

NL necessarily lies outside th
range of velocities@v2 ,v1#, ~i.e., v2

NL,v2 and/or v1
NL

.v1), as sketched in Figs. 3~c!–3~e!. Otherwise, a linear
front could emerge and propagate at the linear edge velo
v6 . This property implies, in particular, that the flow may b
linearly convectively unstable (v2.0) and nonlinearly ab-
solute unstable (v2

NL,0) @Fig. 3~e!#. In such a situation, the
flow may bifurcate toward another state such as a limit cy

FIG. 3. Typical impulse responses of a homogeneous medium illustra
~a!–~b! linear and~c!–~f! nonlinear velocity selection. In cases~a!–~d!, the
convective/absolute nature of the flow is preserved from the linear to n
linear régime @convective for ~a! and ~c!, absolute for~b! and ~d!#. By
contrast, case~e! illustrates linearly convective and nonlinearly absolu
instability. The reverse~f !, linearly absolute and nonlinearly convectiv
instability, is impossible.
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although it is linearly convectively unstable. Note also th
since the nonlinear wave packet contains the linear w
packet, linear absolute instability necessarily implies non
ear absolute instability, which, for instance, forbids the s
nario sketched in Fig. 3~f!.

The above notions have found an illustration
Taylor–Couette1 and Rayleigh–Be´nard2 experiments in open
flow configurations. The stream forced in the axial1 or
horizontal2 direction, normal to the primary instability rolls
~Ref. 1 accounts for a two-dimensional simulation while
Ref. 2 experimental results are reported!. In both instances,
the front selection was observed to be linear. These findi
justify the use of linear criteria in the prediction of resonan
in such systems.

However, it should be noted that in the above studies1,2

the superimposed throughflow is small and that the beha
may thus be described in a weakly nonlinear framework b
Ginzburg–Landau amplitude equation. The validity of line
criteria for front selection is therefore not surprising. By co
trast, shear flows such as bluffbody wakes present loca
stability growth rates of order unity, as advection and sh
cannot be monitored independently. Their behavior shoua
priori be affected by strongly nonlinear effects, since at
threshold, the wave packet amplitude is also of order unity
is hence worth examining the existence of fronts separa
the basic unstable state from the saturated bifurcated st
state, and also investigating the influence ofstrong nonlin-
earitieson front-velocity selection inopen shear flows. Such
a study is undertaken here in the context of two-dimensio
symmetric parallel wake profiles introduced by Monkew
and Nguyen.11 The strong nonparallelism of realistic bluff
body wake flows is deliberately ignored, since we wish
focus on the effects of nonlinear terms. We find that, for
selected family of wake profiles, front selection is govern
by linear mechanisms. It should be emphasized that lin
front-velocity selection isnogeneric feature of nonlinear me
dia and that nonlinear selection has been observed in o
experimental situations, such as chemically react
systems24 and liquid crystals.25

This paper is organized as follows. The numerical
pects of the simulation as well as investigation techniq
are presented in Sec. II. Linear temporal and spatiotemp
properties are retrieved from DNS in Sec. III for two diffe
ent wake configurations: a strongly confined periodic wa
and a weakly confined wake. The nonlinear wave pac
evolution in both configurations is presented in Sec. IV. Co
clusions regarding the validity of linear theory at the glob
instability threshold are discussed in Sec. V.

II. NUMERICAL ASPECTS

A. Direct numerical simulation technique

In all the following, the basic wake is assumed paral
in the streamwisex direction, and the streamwise velocit
componentU depends solely on the cross-stream coordin
y. The wake half-widthD/2 and the free-stream velocityU`

are used to make distances and velocities dimensionless
U5U(y) x̂ and V5“3U denote the velocity and vorticity
of the basic flow. The evolution of velocity~u!, vorticity ~v!,

g

n-
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2727Phys. Fluids, Vol. 10, No. 11, November 1998 I. Delbende and J.-M. Chomaz
and pressure~p! disturbances is governed by the incompre
ible two-dimensional Navier–Stokes equations written h
in velocity/vorticity formulation:

]u

]t
5u3V1U3v1u3v1“Fp1u–U1

u2

2 G
1

1

Re
¹2u, ~1!

where Re designates the Reynolds number based on
above reference scales~the correspondence Re5Re(D)/2
holds!. Note that the diffusion acting on the basic flow
assumed to be compensated by a body force and tha
corresponding term Re21

“

2U has thus been removed in~1!,
as is often done in theoretical studies in order to make
problem autonomous. In particular, it allows direct compa
sons with the alternative branch-point analysis
Monkewitz,7 which relies on the same assumptions. The
merical procedure here consists of a pseudospectral
originally written by Vincent and Meneguzzi,26 adapted, op-
timized, and validated by Brancher27 to two-dimensional
rectangular domains. Details on the numerical technique
be found in Ref. 28. The Fourier formulation enforces pe
odicity of the system along both the streamwisex and the
cross-streamy directions. Collocation points are distant b
dx5dy50.1. The physical domain made up of 1024 or 20
points alongx is chosen long enough to ensure that the p
turbation remains localized far away from the streamw
boundaries during the total simulation time and that the
sults are indeed unaffected by streamwise periodicity. In
following, two different cross-stream box widths are succ
sively adopted. For the first one,Ly54.8, the wake is
strongly confined between two adjacent~identical! wakes
situated 2.4 diameters apart. For the second one,Ly525.6,
the domain is wide enough, so that the computed soluti
satisfactorily approximate the dynamics of a single wake
an infinite medium.

The basic wake profile adopted here has been elabor
by Monkewitz and Nguyen.11 The streamwise component o
velocity is given by

U~y!512L12L
1

11sinh2Nuy sinh21~1!u
, with N52.

~2!

Since the centerline velocityU0 is chosen to be zero, th
velocity ratioL[(U02U`)/(U01U`) is L521 through-
out the study. Results for otherL values can be obtained b
Gallilean transformation. For the selected value ofN, each
vorticity layer is ~well! sampled on ten mesh lines approx
mately. This wake profile has also been considered by D
et al.,29 who used a vortex blob method to simulate the
viscid and viscous response to a localized pulse for differ
values of the velocity ratioL.

The computational field is initialized by the divergenc
free velocity disturbanceu(x,y,t50) with components:

ux52~y2y0!expF2S x2

2sx
2 1

~y2y0!2

2sy
2 D G ,
~3!
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sx
2 x expF2S x2

2sx
2 1

~y2y0!2

2sy
2 D G .

The initial perturbation takes the form of a small vortici
spot located at (x50, y5y0). The distribution envelope is
Gaussian and has a typical extentsx along thex direction
and sy along they direction. The length scalessx and sy

must a priori be taken as small as possible, as the init
conditions should take the form of a delta function. Nev
theless, the valuessx50.4, sy50.6 have been chosen i
order to ensure satisfactory sampling in the truncated spe
space. In this manner, the initial perturbation at least conta
all the physically relevant wave numbers, as checkeda pos-
teriori. Moreover, it is centered aty050.5 in one of the two
wake shear layers, so that no particular symmetry is enfor
on the solution by the initial conditions.

B. Decomposition procedure for linear simulations

A set of linear simulations is first performed whereb
the linear instability properties of the basic flow under inve
tigation can be derived. The evolution of an initially loca
ized perturbation is simulated according to the Navie
Stokes equation linearized in the vicinity of the basic sta
i.e., Eq.~1!, in which the termsu3v and“u22 are omitted.
Through the analysis of the simulated wave packet descr
below, the linear temporal and spatiotemporal instabi
properties are retrieved.

The theoretical treatment of the associated O
Sommerfeld eigenvalue problem30 associated with the sym
metric velocity profile~2! reveals the existence of a discre
set of branches parametrized by the streamwise wave num
k. They pertain either to varicose modes for which the v
ticity eigenfunction is symmetric with respect to thex axis,
or to sinuous modes, for which the vorticity eigenfunction
antisymmetric. The contributionsvsin and vvar, of sinuous
and varicose modes, respectively, to the perturbation vo
ity v can be separated easily by considering the even
odd components ofv:

vsin~x,y,t !5 1
2@v~x,y,t !1v~x,2y,t !#, ~4!

vvar~x,y,t !5 1
2@v~x,y,t !2v~x,2y,t !#. ~5!

Each contribution can then be considered independently.
procedure is detailed below for the sinuous part, but the sa
holds for the varicose part.

1. Temporal instability, analysis in spectral space

In the temporal formulation of instability problems,
real wave numberk in the x direction is prescribed and th
corresponding complex frequencyvsin(k) is sought. As ex-
plained in Brancher,27 the simulation of an initially localized
impulse generates a wave packet with a broad spect
structure~see, for instance, Fig. 4!. By considering the evo-
lution of the spectrum in time, one may recover in a sing
run the leading temporal instability properties of the ba
flow prevailing for each streamwise wave numberk.

The procedure is applied here on the perturbati
enstrophy spectrum:
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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esin~k,t !5S E
0

1`

uv̂sin~k,y,t !u2 dyD 1/2

, ~6!

which measures the amplitude of the temporal wave un
consideration. According to temporal instability theory, t
above variable is known to evolve asymptotically for lar
times as

esin~k,t !}ev i ,sin~k!t, t→`, ~7!

wherev i ,sin(k) denotes the leading temporal growth rate
wave numberk. Conversely,v i ,sin(k) can be expressed as

v i ,sin~k!;
]

]t
ln esin~k,t !, t→`. ~8!

If v i ,sin(k) is well separated from the other eigenvalues o
smaller growth rate, it is possible to obtain its value from t
computed spectrum distributionesin(k,t) for large times, by
making use of the discretized form of~8!:

v i ,sin~k!'
ln@esin~k,t2!/esin~k,t1!#

t22t1
. ~9!

Due to the spatial discretization, the corresponding temp
growth ratev i ,sin(k) can be numerically determined in th
range 2p/dx,k,p/dx in successive steps of sizedk
52p/Lx .

In order to validate the above procedure, one checks
convergence ofv i ,sin(k) for severalt1,2 values. It is also nec-
essary to make sure that the corresponding eigenfunctio

fsin~k,y,t !5
v̂sin~k,y,t !

esin~k,t !
, ~10!

is indeed shape invariant in time.

2. Spatiotemporal instability, ray analysis

The spatiotemporal formulation is concerned with t
determination of the Green’s function, or equivalently, w
the instability modes of given real group velocityvg . It is
thus necessary to investigate the wave packet structur
physical space, as these modes develop along the spatio
poral ray x/t5vg . This can be done unambiguously sin
the impulse response consists of a spatially oscillating w

FIG. 4. Perturbation spectrumesin of the dominant sinuous mode as a fun
tion of real streamwise wave numberk. The curves are extracted from th
simulated wake impulse response at several timest58,12,...,40 for Re
520 andLy54.8.
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with a typical instability wavelength, smoothly modulated
space by an amplitude function~which is as smooth as de
sired provided that timet be taken sufficiently large!. The
perturbation spectrum then adopts a band structure tha
lows us to carry out the following procedure. First, the co
tribution of all Fourier modes with negative wave numb
k,0 is set to zero in spectral space in such a way that
recovers the usual complex exponential formulation.
physical space, the imaginary part associated to the real
nal vsin(x,y,t) is recovered by a spatial Hilbert transfor
along the streamwisex direction, as in Ref. 27:

v̄sin~x,y,t !5S d~x!1
i

pxD * vsin~x,y,t !

[Asin~x,y,t !eiwsin~x,y,t !, ~11!

where* designates the convolution operator inx, Asin(x,y,t)
the amplitude, andwsin(x,y,t) the phase within the wave
packet.

The real amplitude functionAsin(x,t) of the dominant
sinuous mode is obtained by integration along the cro
streamy direction according to the formula

Asin~x,t !5S E
0

Ly/2

Asin
2 ~x,y,t !dyD 1/2

. ~12!

This quantity can be shown31 to behave asymptotically as

Asin~x,t !}t21/2essin~vg!t, vg5x/t5const, t→`.
~13!

In the above equation,ssin(vg) designates the real growt
rate of the sinuous mode dominating the dynamics along
ray x/t5vg . It can be calculated as follows:

ssin~vg!;
d

dt
ln@ t1/2Asin~vgt,t !#, t→`, ~14!

or, in discretized form,

ssin~vg!'
ln@Asin~vgt2 ,t2!/Asin~vgt1 ,t1!#

t22t1
1s0~ t1 ,t2!,

~15!

where the term

s0~ t1 ,t2!5
ln~ t2 /t1!

2~ t22t1!
~16!

is a finite-time correction arising from thet21/2 factor in Eq.
~13!. For the values oft1 and t2 adopted in the following,
s0(t1536,t2540)'0.013. This term was omitted in Re
28, thereby slightly underestimating the spatiotempo
growth rates without, however, affecting the results qual
tively. It has been included here, because its contribution
a constant is not negligible in relative magnitude, especia
for nearly neutral modes.

At a given timet, the real part of the complex local wav
number32 kr ,sin can be evaluated on thex axis ~at y50) as
follows:

kr ,sin~x,t !5
]wsin

]x
~x,0,t !5ReH 1

i v̄sin

]v̄sin

]x
~x,0,t !J .

~17!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The calculation of the derivative with respect tox in ~17! is
implemented in spectral space, where it reduces to a m
plication by ik. Asymptotically for large times,ksin depends
solely on the group velocityvg5x/t.

Again, the validation of the above procedure involves
convergence check when using relations~15! and ~17!. The
time invariance of the normalized eigenfunction,

f~vg ,y,t !5
vsin~x5vgt,y,t !

Asin~x5vgt,t !eiw~x,0,t ! , ~18!

must also be ensured.

C. Analysis of nonlinear simulations

Nonlinear effects, via the reintroduction of the ter
u3v, have two consequences. On the one hand, this pro
displays a symmetry opposite to that of the sinuous mod
which thus forces a varicose contribution to the impulse
sponse. On the other hand, it generates small wave num
that destroy the previous band structure of the perturba
spectrum. In such cases, the Hilbert transform procedure~11!
no longer leads to the retrieval of the wave pac
envelope,33 since it artificially expands the wave packet.
order to circumvent this difficulty, it is convenient to stud
the behavior of the rms local enstrophyh(x,t) ~hereafter
simply called enstrophy! defined at each streamwise locatio
x and timet by

h~x,t !5S E
2Ly/2

Ly/2

v2~x,y,t !dyD 1/2

. ~19!

This quantity satisfactorily accounts for the wave packet a
plitude. @However, the carrier wave is thereby not fully fi
tered out. As a consequence,h curves generally exhibi
wiggles~see Figs. 15, 17, and 20!, which may provide some
information on the wave packet phase.#

III. LINEAR IMPULSE RESPONSE

A. Strongly confined periodic wake „L y54.8…

In the first simulation, the downstream and cross-stre
sizes of the computational domain have, respectively, b
selected to beLx5102.4 andLy54.8. For such a strong
confinement (Ly /D52.4), the periodic boundary condition
along y impose a strong coupling between adjacent wa
images. The linear evolution of the initially localized distu
bance~3! is computed up to timet540. The modal decom
position formulas~4!–~5! are applied to the perturbation fiel
at several times during the simulation for both sinuous a
varicose contributions. For the basic velocity profile und
consideration~2!, only the sinuous inviscid-like mode i
found to be linearly unstable at the selected Reynolds n
ber Re520. In the following, we therefore focus solely o
this dominant sinuous mode.

1. Temporal instability

The perturbation spectrumesin(k,t) extracted from the
simulation is plotted in Fig. 4 at several timest
58,12,...,40: temporal modes are seen to grow or decay
ponentially according to the magnitude of the wave numb
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The corresponding sinuous mode growth ratev i ,sin is ob-
tained through formula~9! applied betweent1536 and t2

540. The temporal growth ratev i ,sin is plotted as a function
of wave numberk in Fig. 5: the curve reaches its maximu
valuev i ,sin

max50.132 at wave numberksin
max50.750. All modes

with wave numbers larger than the ‘‘cutoff’’ wave numb
ksin

c.o.51.374 are damped.

2. Spatiotemporal instability

In order to determine the spatiotemporal instability pro
erties of the flow, the physical perturbation vorticity field
observed on each spatiotemporal rayx/t5const5vg . The
evolution of the amplitudeAsin corrected by the factort1/2

@see Eq.~14!# is presented in Fig. 6 as a function of grou
velocity vg . It can be seen that the set of amplitude curv
exhibits two turning points, atv2 andv1 , indicating that the
wave packet grows between two well-defined edgesx/t
5v2 andx/t5v1 . The precise values of the edge velociti
v2 andv1 are determined by computing the correspond
growth ratessin via formula ~15!, applied betweent1536
and t2540. The spatiotemporal growth rate of the sinuo
modessin is plotted in Fig. 7 as a function of group velocit
vg . The shape of the spatiotemporal growth-rate curve
very close to that of a parabola. The maximumssin

max

50.132 is observed along the rayx/t50.51. The maximum

FIG. 5. The temporal growth ratev i ,sin of the sinuous mode, as determine
from the wake impulse response for each Fourier componentk at Re520
andLy54.8.

FIG. 6. Time-corrected amplitudet1/2Asin of the sinuous mode as a functio
of group velocityvg at several timest58,12,...,40. The amplitude has bee
retrieved from the direct numerical simulation at Re520 andLy54.8.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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value ssin
max can be shown by construction6 to coincide with

the maximum temporal growth ratev i ,sin
max . The agreemen

between the two values determined numerically is seen t
better than 1%, and constitutes an internal coherence c
for the method. The trailing and leading edges, which
definition sustain neutral waves, are the spatiotemporal
x/t5v250.053 andx/t5v150.95. The growth-rate curve
is almost symmetrical with respect to the central rayx/t
50.51. This feature can be explained by the fact that
cross-stream box sizeLy54.8 is close to the valueLy52D
54 for which the basic flow velocity is invariant under th
transformationU→12U, which would enforce the reflec
tional symmetry of the impulse response with respect to
ray x/t5 1

2.
It is also possible to extract the streamwise wave num

as a function ofx/t via formula~17!, as plotted in Fig. 8. The
maximum amplification, obtained forvg50.51, is associated
with the wave number valuekr ,sin

max50.74, in agreement with
the value 0.75 previously obtained through the temporal
proach. Furthermore, the wave number extracted by the
bert transform procedure was checked to coincide with di
wavelength measurements deduced from zero crossing o
perturbation vorticity along the symmetryx axis at timet
580 ~Fig. 8!.

FIG. 7. The spatiotemporal growth ratessin of the sinuous mode as dete
mined from the results of Fig. 6 at Re520 andLy54.8.

FIG. 8. The real partkr ,sin of streamwise wave number, as determined fro
the wake impulse response as a function ofx/t5vg at t540, Re520, and
Ly54.8. —: extraction via formula~17!; d: direct measurement on th
vorticity field.
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B. Weakly confined wake „L y525.6…

In order to simulate the dynamics of an isolated wa
the cross-stream box size was widened toLy525.6 (Ly /D
512.8). A linear simulation is performed in this wider do
main for the same initial perturbation field~3! and Reynolds
number Re520 as for the confined case. The perturbati
was checked to decay rapidly enough withuyu, so that at the
boundariesy56Ly/2 the velocity and the vorticity almos
vanish. This check ascertained thaty periodicity induced
negligible coupling between adjacent wake images. T
same decomposition and analysis procedure as in Sec.
is applied. For the velocity profile~2! under study, only the
sinuous mode is found to be unstable. The temporal gro
rate v i ,sin(k) slightly differs from the caseLy54.8, as dis-
played in Fig. 9, where both curves are plotted. The ma
mum growth rate is somewhat smaller,v i ,sin

max50.107 atksin
max

50.710. The cutoff wave number is reduced toksin
c.o.

51.320.
The linear growth rate on the spatiotemporal raysx/t

5vg determined withLy525.6 is compared to the curv
obtained withLy54.8 ~dashed line! in Fig. 10. The shape is
still quasiparabolic, but the wave packet spatial extent is s
to be substantially reduced. Both trailing- and leading-ed

FIG. 9. The temporal growth ratev i ,sin of the sinuous mode, as determine
from the wake impulse response for each Fourier component of wave n
ber k at Re520 andLy525.6. The dashed curve pertains to the caseLy

54.8, as plotted in Fig. 5.

FIG. 10. The spatiotemporal growth ratessin of the sinuous mode, as de
termined from the wake impulse response on each spatiotemporal rax/t
5vg at Re520 andLy525.6. The dashed curve pertains to the caseLy

54.8, as plotted in Fig. 7.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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velocities, respectively, decrease tov250.016 and v1

50.82. It is surprising that in spite of the fact that the me
basic velocity is larger in the caseLy525.6 than in the case
Ly54.8, group velocities have globally decreased. In p
ticular, the trailing-edge velocity has decreased, thus prom
ing the absolute character of the instability. The rayx/t5 1

2 is
no longer a symmetry axis for the curve, as the invaria
under the transformationU→12U no longer holds. Be-
sides, the weakly confined wake is less unstable than
strongly confined one, sincessin

max50.107 instead of 0.132.
The value of the trailing-edge velocityv2 can be com-

pared with the result obtained by Monkewitz7 by direct ap-
plication of the Briggs–Bers criterion34 on the viscous dis-
persion relation. From his Fig. 4, a critical velocity ratio f
the occurrence of absolute instability isLc

(M )521.02. The
relationship between the presentv2 value andLc is given by
Lc5(2v221)21, which in our case yieldsLc521.03.
This Lc value only differs by 1% fromLc

(M ) . The present
method of investigation has been further validated by sim
comparisons for different values ofN and Re. The data ob
tained for N52, Re520, 40, 100, 200 and for Re520, N
51, 1.4, 2, 3 have been superposed on the results obta
by Monkewitz in Fig. 11. In all cases, a satisfactory agre
ment is obtained. This confirms the validity and efficiency
the present procedure based on direct numerical simulati
It also confirms the convergence of the method, as wel
the negligible effects of finite-time approximation and fin
box size, particularly in the cross-stream direction.

The most important difference between the linear ins
bility properties of the weakly and strongly confined wak
arises from the real partkr ,sin of the wave number, as repre
sented in Fig. 12. Near the leading edgev150.82, the wave-
length is seen to diverge—although, strictly speaking,
Hilbert transform procedure fails to separate phase and
plitude near such points. The oscillatory behavior of t
wave packet ends near the leading edge, thus forbidding
formation of new vortices feeding the wave packet fro
downstream.

FIG. 11. Critical values of the velocity ratioLc for convective/absolute
transition, for different values ofN and Re. The continuous lines taken fro
the study by Monkewitz,7 Fig. 4, are obtained by saddle-point tracking. T
symbols denote criticalLc values deduced from the trailing edge velociti
v2 obtained by DNS for Re520(d), Re540(j), Re5100(m), and Re
5200(.).
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IV. NONLINEAR IMPULSE RESPONSE

Nonlinear simulations have been performed in each
the above cases for the same initial condition~3!. The non-
linear termu3v, now included, causes the wave packet
saturate after an initial exponential growth. The influence
the saturation on the edge dynamics is investigated suc
sively in both configurations,Ly54.8 and Ly525.6. The
nonlinear term also breaks the symmetryy→2y and sinu-
ous and varicose modes cannot be treated separately. M
precisely, a varicose wave packet exists, but the sinu
wave packet also generates a varicose perturbation.

A. Strongly confined periodic wake „L y54.8…

The nonlinear evolution of an initially localized pertu
bation in the strongly confined wake (Ly54.8) has been
simulated at the same Reynolds number Re520 up to time
t580. Isocontours of the total vorticityV(y)1v(x,y,t) are
plotted in Fig. 13 at several times. Note that in the strea
wise x direction, only the central region of the domain h
been represented. The initial pulse is merely visible on
bottom graph atx50. The perturbation both increases
amplitude and develops in space, as may be seen from
oscillations of the isocontours. Neart540, the oscillations
reach the amplitude of the basic flow, and vorticity begins
roll up into counter-rotating vortices. Fort>60, several
wavelengths of a quasiregular pattern can be distinguish
the number of which increases as the wave packet spr
out along the streamwisex direction. The time evolution of
the rms perturbation vorticity over the entire domain,

Ã~ t !5S EEv2~x,y,t !dxdyD 1/2

, ~20!

is presented in Fig. 14. After a transient period (t,10), the
perturbation undergoes an exponential growth (10,t,35).
During both periods, the system evolution is governed
linear instability mechanisms, and the curveÃ(t) follows
the dashed curve obtained in the linear simulation prese
in Sec. III A. The wave packet then undergoes a satura
process (35,t,55), during which the energy growth is sub

FIG. 12. The real partkr ,sin of streamwise wave number as determined fro
the wake impulse response as a function ofx/t5vg at t540, Re520 for
Ly525.6.—: extraction via formula~17!; d: direct measurement on the
vorticity field.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 13. Isocontours of the total vorticity distributionV(y)1v(x,y,t) at several timest50, 20, 40, 60, and 80~from bottom to top! for Re520 andLy

54.8. Solid isolines pertain to positive levels 0.25, 0.5, 0.75, and 1. Dotted isolines pertain to negative levels20.25,20.5,20.75, and21. The computational
domain has been cropped to a shorter streamwise extent210<x<80 ~for the original domain,220<x<184.8).
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stantially reduced. Eventually,Ã grows linearly as a func-
tion of time while the saturated wave packet spreads ou
the constant extension ratev1

NL2v2
NL .

This saturation process may also be followed on the
terfall plot of Fig. 15, where the rms enstrophyh is plotted
as a function ofx at several times. The wave packet sprea
ing is clearly seen on the seven top curves. The two ed
delimiting the wave packet in Fig. 15 have been determin
by following the constanth levels prevailing at the linea
stage (t<35). It can be observed that, in the nonlinear´-
gime (t.35), the propagation of the two edges seems un
fected by the wave packet amplitude saturation. Thex2t
diagram of Fig. 16 displays the paths along which the c
terline vorticityv(x,0,t) vanishes, i.e., along which the wav

FIG. 14. Temporal evolution of the rms perturbation vorticityÃ for Re
520 andLy54.8.
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packet phasew(x,y50,t) is constant~and from one line to
the next alternatively equals 0 andp!. ~As the antisymmetric
part of the perturbation vorticity vanishes on the centerli
this procedure provides information on the sole symme
part, i.e., the sinuous component.! Within the wave packet,
the phase velocity is seen to lie between the two front
locities. As a consequence, new vortices form at the trail
edge,but alsoat the leading edge of the wave packet.

In order to examine precisely the effect of nonline
terms on the wave packet edges, the enstrophy cu
h(x,t580) obtained by linear and nonlinear simulations
t580 are superposed in Fig. 17. The comparison of the

FIG. 15. Waterfall plot of enstrophyh in the x-t plane at Re520 andLy

54.8. The wave packet edges are also represented.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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curves clearly demonstrates that both amplitude and ph
obtained by linear and nonlinear simulations coincide ac
rately on each wave packet edge over more than four en
phy decades. This situation corresponds remarkably to
narios~a!–~b! in Fig. 3. The nonlinear terms just cause t
amplitude to saturate in the wave packet core, while
phase is left unchanged from linear to nonlinear simulatio
as could also be checked by direct comparison of the
vorticity fields. As a consequence, both front velocitiesv6

NL

are seen to be purely enforced by the linear instability pr
erties of the medium. For the strongly confined periodic p
allel wake, the linear front-velocity selection of Dee a
Langer23 holds:

v6
NL5v6 . ~21!

Consequently, the convective/absolute nature of this flow
preserved from the linear to nonlinear re´gime.

B. Weakly confined wake „L y525.6…

Isocontours of the total vorticity fieldV(y)1v(x,y,t),
obtained in the nonlinear simulation for the weakly confin
wake atLy525.6, are displayed in Fig. 18 at several time
Only the central region of the computational domain inx and
y has been represented. As in the experiment of Le Gal

FIG. 16. The spatiotemporalx2t diagram presenting the isophase pat
along whichw(x,y50,t)50,p, at Re520 andLy54.8. Bold lines represen
wave packet edges.

FIG. 17. Enstrophy distribution as a function ofx/t at timet580 for linear
~thin curve! and nonlinear ~bold curve! simulations at Re520 and
Ly54.8.
Downloaded 13 Jan 2003 to 192.44.78.87. Redistribution subject to AI
se
-

ro-
e-

e
s,
D

-
r-

is

.

nd

Croquette,18 passive tracer particles have been regula
spaced on thex axis att50, and their evolution is followed
by implementing a predictor/corrector algorithm. As se
from the plot att580 in Fig. 18, the separation of the initia
line into small parts under the effect of rollup is evident,
in Fig. 2. One should note, however, that contrary to exp
ments, the present wake profile is independent of the stre
wise x direction. Possibly as a consequence of this fact,
wave packet is found to be far less regular than its exp
mental counterpart of Fig. 2, and the vortex street eventu
becomes disorganized for large times, as can be seen in
neighborhood of the downstream front att5100 in Fig. 18.

The spatiotemporalx2t diagram of Fig. 19 confirms the
existence of an instability in the saturated region. In t
isophase representation, a vortex merging event corresp
to the loss of one wavelength, and appears as the annihila
of two adjacent lines. Such a vortex merging is seen to t
place att'100 ~arrow C!. Note that, contrary to what hap
pens in the strongly confined wake, no additional wavelen
is created from the downstream side through the lead
front of the wave packet. This feature is also observed in
experiment of Fig. 2: the wave packet ends abruptly in
fully developed vortex, which remains the same during
entire observation time. The steepness of the leading fron
no nonlinear effect, but can be accounted for by linear c
siderations: as the linear wavelength becomes infinite at
leading edge~see Fig. 12!, phase velocityc and group veloc-
ity vg tend to coincide since

c[
v

k
→

]v

]k
5vg , when v,k→0 and cÞ0. ~22!

This relation prevents the creation of new vortices at
leading edge where isophase lines become parallel to
edge.

In Fig. 19, the edges have been determined as pr
ously. In the nonlinear re´gime (t.60), the leading edge
seems to depart from its linear counterpart. This pheno
enon is analyzed by comparison of the enstrophy distribu
curvesh(x,t580) obtained from linear and nonlinear sim
lations @Fig. 20~a!#. Figure 20~a! reveals three main differ-
ences with respect to the caseLy54.8, as indicated by the
three arrows. A vortex-merging event can be spotted by
irregularity of the enstrophy curve~indicated by arrow C!.
Moreover, both nonlinear fronts are seen to differ from line
ones~arrows A and B! because of enstrophy excesses pres
at both wave packet ends. These enstrophy excesses
both been observed to consist of zero-wave number pe
bations, but their symmetry differ. The perturbation at t
leading edge~arrow B! displays the symmetry opposite t
that of the basic flow: it consists of a slight shift of the she
layers. By contrast, the perturbation at the trailing edge~ar-
row A! has the same symmetry as the basic flow: it cons
of a slight pinching of the basic wake.

It is of interest to further investigate the ‘‘sinuous’’ con
tribution to the wave packet, which is known to give rise
the alternating vortices typical of the von Ka´rmán street. The
‘‘sinuous’’ enstrophy computed by formula~19!, wherev is
replaced byvsin is plotted in Fig. 20~b!. From the compari-
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 18. Isocontours of the total vorticity distributionV(y)1v(x,y,t) at several timest50, 20, 40, 60, 80, and 100 for Re520 andLy525.6. Solid isolines
pertain to positive levels 0.25, 0.5, 0.75, and 1. Dotted isolines pertain to negative levels20.25,20.5, 20.75, and21. The computational domain has bee
cropped to shorter streamwise and crosswise extents210<x<80 and25<y<5 ~for the original domain,220<x<184.8 and212.8<y<12.8). Fort
580, the dispersion of passive tracer particles initially equispaced on the centerline has been represented.
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son with the enstrophy curve obtained from the linear sim
lation, also plotted, it is clear that the trailing front of th
‘‘sinuous’’ part of the wave packet~the ‘‘vortex front’’! is
linearly selected, as both linear and nonlinear curves n
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strictly superpose at the trailing edge. This is also clea
seen in Fig. 19, where the vortex front represented b
dashed line exhibits a constant slope. This feature indic
that linear front-velocity selectionv25v2

NL holds when the
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sole sinuous contribution is considered. The upstream vo
front then follows the linear selection mechanism, ev
though the vortex street downstream of its displays str
nonlinearities, and though it is itself unstable and suscept
to merging events.

V. CONCLUDING REMARKS

The linear and nonlinear impulse response of para
wake flows has been investigated by direct numerical sim
lation. In the case of a strongly confined periodic wake, it h
been shown by direct comparison of the linear and nonlin
wave packet evolution that the upstream and downstre

FIG. 19. Spatiotemporalx2t diagram of isophase linesw(x,y50,t)
50,p. The wave packet edges are represented in bold~solid line: full wave
packet; dashed line: ‘‘sinuous’’ component only!. Arrows A and B point to
the regions analyzed in Fig. 20. Arrow C points to the merging event.

FIG. 20. ~a! Enstrophyh and ~b! the ‘‘sinuous’’ part hsin of enstrophy
distributions as a function ofx/t at time t580 for linear~thin curves! and
nonlinear~bold curves! simulations at Re520 andLy525.6.
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fronts are both linearly selected, according to the Dee
Langer23 mechanism. In the case of a weakly confined wa
the wave packet dynamics were found to be affected by lo
wavelength perturbations and instabilities. However, the
streamvortex front, isolated by considering the ‘‘sinuous’
component of the wave packet only, was shown to be
early selected. In that case, the vortex street was observe
be irregular and unstable to vortex merging. The drastic
duction of the cross-stream box size toLy54.8 effectively
quenched the pairing instability and a regular stable vor
street was obtained. This study has presented the case
system governed by the Navier–Stokes equations, whic
highly unstable toward infinitesimal perturbations, and fro
which a stable saturated state arises in the form of a f
developed vortex street. The present configuration is the a
log for a real flow of the idealized front dynamics inves
gated until now in the context of amplitude evolutio
equations.21,22,19,35,14Nonlinear terms are found to limit the
amplitude at some saturation level in the wave packet c
but have no effect on the wave packet propagation. T
front-velocity selection is thus linear for both leading a
trailing edges.

In the case of a weakly confined parallel wake, the si
ation is somewhat complicated by the vortex-street insta
ity. The existence of a well-defined front traveling at co
stant velocity isa priori not expected in that case. Indeed,
zero-wave number deformation~antisymmetric in vorticity!
of the upstream front is observed, which does not seem to
linked directly to a vortex-pairing process. This deformati
was checked not to depend on the grid stepdx and cannot be
attributed to a numerical artifact. It is likely that, in a realist
configuration, the presence of the bluffbody would suppr
this deformation. Thus, it seems plausible to base the ‘‘v
tex’’ front velocity on the sinuous component of the wa
packet. The application of the procedure shows that
vortex-front velocity is linearly selected also in the weak
confined configuration. Under these restrictions, the lin
convective/absolute instability threshold corresponds to
nonlinear convective/absolute instability threshold.

The linear front-velocity selection has been found to ta
place forall values ofN and Re~see Sec. III B!, pertaining to
far-wake (N51,1.4) as well as near-wake (N52,3) basic
profiles and covering a relatively large range of advect
levels. Therefore, in the family of profiles~2!, the linear
convective/absolute transition should coincide with the n
linear one. Linear spatiotemporal instability properties ha
been recently shown16 to successfully predict transition in
nonparallel flows such as wakes. Although the present st
is restricted to parallel flow instability, we conjecture that
explains this success qualitatively, as nonlinear effects do
affect the absolute instability threshold.

Front dynamics has previously been investigated
Taylor–Couette1 and Rayleigh–Be´nard2 systems with a
small superimposed throughflow. In such weakly nonline
cases, an amplitude equation approach is legitimate, and
expects to recover the front-velocity selection criterion p
posed by Dee and Langer.23 In the present study, conducte
for a shear flow far away from the onset of instability, th
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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same selection criterion has been shown to hold, altho
strongly nonlinear mechanisms have been activated.

ACKNOWLEDGMENTS

The authors would like to warmly thank Pierre Branch
who generously made the numerical code available. We
joyed many fruitful discussions with the gentle people
LadHyX, in particular, with Carlo Cossu, Arnaud Couairo
and Patrick Huerre. Thanks are extended to The´rèse Les-
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Kármán instability: transient and forced regimes,’’ J. Fluid Mech.182, 1
~1987!.

6P. Huerre and P. A. Monkewitz, ‘‘Local and global instabilities in spatia
developing flows,’’ Annu. Rev. Fluid Mech.22, 473 ~1990!.

7P. A. Monkewitz, ‘‘The absolute and convective nature of instability
two-dimensional wakes at low Reynolds numbers,’’ Phys. Fluids31, 999
~1988!.

8K. Hannemann and H. Oertel, Jr., ‘‘Numerical simulation of the absolut
and convectively unstable wake,’’ J. Fluid Mech.199, 55 ~1989!.

9R. T. Pierrehumbert, ‘‘Local and global baroclinic instability of zonal
varying flow,’’ J. Atmos. Sci.41, 2141~1984!.

10W. Koch, ‘‘Local instability characteristics and frequency determinat
of self-excited wake flows,’’ J. Sound Vib.99, 53 ~1985!.

11P. A. Monkewitz and L. N. Nguyen, ‘‘Absolute instability in the nea
wake of two-dimensional bluff bodies,’’ J. Fluids Struct.1, 165 ~1987!.

12J.-M. Chomaz, P. Huerre, and L. G. Redekopp, ‘‘Bifurcations to local a
global modes in spatially developing flows,’’ Phys. Rev. Lett.60, 25
~1988!.

13S. Le Dizès, P. Huerre, J.-M. Chomaz, and P. A. Monkewitz, ‘‘Line
global modes in spatially developing media,’’ Philos. Trans. R. Soc. L
don, Ser. A354, 169 ~1996!.

14B. Pier, P. Huerre, J.-M. Chomaz, and A. Couairon, ‘‘Selection criteria
soft and steep nonlinear global modes in spatially developing media,
appear in Phys. Fluids.

15M. Schumm, E. Berger, and P. A. Monkewitz, ‘‘Self-excited oscillatio
in the wake of two-dimensional bluff bodies and their control,’’ J. Flu
Mech.271, 17 ~1994!.

16D. A. Hammond and L. G. Redekopp, ‘‘Global dynamics of symmet
Downloaded 13 Jan 2003 to 192.44.78.87. Redistribution subject to AI
h

,
n-
t

e.
t

r-

f

y

d

-

r
o

and asymmetric wakes,’’ J. Fluid Mech.331, 231 ~1997!.
17P. A. Monkewitz, P. Huerre, and J.-M. Chomaz, ‘‘Global linear stabil

analysis of weakly non-parallel shear flows,’’ J. Fluid Mech.251, 1
~1993!.

18P. Le Gal and V. Croquette, ‘‘Analyse en temps re´el d’un sillage,’’ Con-
grès SFP 1991, Caen, France, Bull. SFP, 1991, Vol. 81, p. 29.

19J.-M. Chomaz, ‘‘Absolute and convective instabilities in nonlinear s
tems,’’ Phys. Rev. Lett.69, 1931~1992!.

20A. Kolmogorov, I. Petrovsky, and N. Piskunov, ‘‘Investigation of a diffu
sion equation connected to the growth of materials, and application
problem in biology,’’ Bulletin de l’universite´ d’état à Moscou, Se´rie in-
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