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The linear versus nonlinear convective/absolute instability of a family of plane wake profiles at low
Reynolds number is investigated by numerically comparing the linearized and the fully nonlinear
impulse responses. Through an analysis of the linear flow response obtained by direct numerical
simulation (DNS), the linear temporal and spatiotemporal instability properties are retrieved, in
excellent agreement with the properties obtained by MonkdWwitys. Fluids31, 3000(1994] from

the study of the associated viscous dispersion relation. Nonlinear terms are then shown to limit the
amplitude to a saturation level within the response wave packet, while leaving the trailing and
leading edges unaffected. For this family of open shear flows, the velocities of the fronts, formed
between the trailing or leading edge and the central saturated region, are thus selected according to
the linear Dee and Langer criteripfhys. Rev. Lett50, 383(1983], whereas the front solutions are

fully nonlinear. This property may be of importance in justifying the usdiméar instability
properties to predict the onset and the frequency of the vamkavortex street, as determined by
Hammond and Redekopp. Fluid Mech.331, 231(1997)]. © 1998 American Institute of Physics.
[S1070-663(198)01710-3

I. INTRODUCTION bility properties at each streamwise location. Monkefvitz
has determined the convective/absolute nature of the insta-
Front propagation in spatially extended systems occursility for a family of profiles with different shear layer thick-
whenever two states with different stability properties coex-nesseg§see Eq(2)] pertinent to the description of bluffbody
ist in contiguous spatial domains. The associated pattern s@rakes. Through a careful fit of experimental data measured
lection problem is then tantamount to the determination ofat the location of greatest reverse flow intensity, he was able
the behavior of the front separating these two domains. Frorb describe the qualitative changes that occur as the Reynolds
selection has been recently investigated in Taylor—Cotiettenumber R is increased from zero. As summarized in Fig.
and Rayleigh—Beard® systems with small throughflow from 1, a transition from local stability to convective instability
a weakly nonlinear point of view. Our goal in the presentfirst occurs at R&~5, then from convective to absolute
study is to extend these investigations to highly unstablénstability at R&)~25. However, the latter transition has no
open shear flows where fully nonlinear effects are predomiexperimental trace, as it is based on a fictitious parallel un-
nant, in order to discriminate between linear and purely nonderlying basic flow? The global bifurcation toward Kaan
linear mechanisms for the spreading of the saturated statgortex shedding eventually takes place at™Re47. This
The study is conducted in the context of plane parallel wakeision is corroborated by the numerical study of Hannemann
flows, where the determination of the front-selection mechaand Qtel® These authors simulated the basic wake flow and
nism is of great importance in predicting the critical thresh-determined the local instability properties in order to dis-
old and the characteristics of the vonren vortex street.  criminate between the shedding-frequency selection criteria
Open shear flows such as heated or low-density*fets proposed by several investigatdra! It was found that a
and bluffbody wakesare known to sustain self-excited os- substantial region of the near wake is absolutely unstable at
cillations in a certain range of parameters. This resonancghe onset of vortex shedding. The finding is qualitatively
phenomenon is now commonly described by resorting to theonsistent with the model studies by Chomaz, Huerre, and
concepts of linear convective/absolute instabilities and gloRedekopp? Le Dizes et al,*® and Pieret al:** absolute in-
bal modes. The most celebrated example of such a behaviostability is a prerequisite for the occurrence of global oscil-
is provided by vortex shedding past two-dimensional blufflations, but it is not sufficient. This explains why the global
bodies: the flow distortion induced by the presence of a cylinstability threshold is usually located at higher control pa-
inder in the flow gives rise to the so-callediged—Kaman  rameter values than the local instability thresh@iy. 1).

vortex street as soon as the Reynolds numbé’Rased on Above the onset of vortex shedding, the growth of the
diameter and free-stream velocity exceeds the critical valuglobal mode is well described by a Stuart—Landau model, as
Re‘GD)~47. supported by the experiments of Provansal, Mathis and

This spectacular phenomenon has been ascribed Hyoyer and Schumm, Berger, and Monkewizthe weakly
Mathis, Provansal, and Boyeto a supercritical Hopf bifur- nonlinear formalism appears to faithfully describe the wake
cation toward a limit cycle. Since then, many attempts havelynamics even “unreasonably®® far above the global insta-
been made to link this global description to the local insta-bility threshold for values of the bifurcation parameter
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LOCAL periment performed by Le Gal and Croquéften the sub-
S. 5I C. 2|5 A. Re(D) critical regime, a small perturbation of the cylinder causes a
T — wavepacket to grow, form a saturated vortex street which is
S. a7 G ultimately advected downstream, as the system is below the
GLOBAL global instability threshold. The passive tracer is strongly

FIG. 1. Local versus global instability properties of the two-dimensional and .rapldly dISpIa.ced, |nd|cat|ng the pres.ence _(?f ;trongly

cylinder wake. S: stable, C: existence of a convective instability pocket, Anonlinear effects linked to the high local instability in the

existence of an absolute instability pocket, G: globally unstable. Grey areagear-wake.

denote instability. When strong nonlinearities intervene, linear convective/
absolute instability concepts shouddpriori be replaced by

. their nonlinear counterpartg. Both linear and nonlinear
(REP—RD)/R® of order unity. More recently, Ham- b

mond and Redekoppsystematically investigated symmetric theories are outlined below.
. y y 9 y . Linear spatio-temporal instability properties are based
and asymmetric wakes past a blunt edged plate with or with- : . . .
. ; X .~ on the behavior of the linear impulse response of the flow in
out blowing and suction. The properties of vortex shedding

] ) : . .-a given reference frame. If the flow is unstable, any localized
were predicted accurately via a numerical approach within . N
ulse develops along the (streamwisg direction into a

the framework of the weakly nonparaftélapproximation: P ket of : | mod hich
the mean flow was obtained by direct numerical simulation’/2v€ Pac et of spatio-temporal modes which grow exponen-

and the local linear instability properties were determined afi@!ly along some rays/t=v and decay along other rays. In
each downstream locatiot The values of the linear growth most s.ltuatlons, the unstable modes are dellngated by a pair
rate and shedding frequency were determined by analytief Particular raysx/t=v . or “edges” along which neutral
continuation in the compleX plane at the dominant saddle Waves propagate. The knowledge of the edge veloaties
point of the complex absolute frequenay(X). allows us to discriminate between convective and absolute
That linear theory accounts so well for the wake dynamjnstabi”tiES(See Huerre and MonKEW&ior a reViEV\). If v_
ics is surprising for two main reasons. First, the flow isandv . have the same sigisay positivg, the linear response
strongly nonparallel and the commonly used WKBJ approxi-decays at each fixed location, indicating a convective type of
mation may legitimately be questioned. Second, the flownstability. If by contrasty _ is negative and , is positive,
near global instability onset is highly unstable in a substanthe spatio-temporal ray/t=0 lies in the range of exponen-
tial region of the wake as a result of the gap existing betweetially growing modes, which indicates an absolute type of
local and global instability threshold&ig. 1): nonlinear ef-  instability.
fects are thus already strong whenRés close to REP), as The extension of these concepts to the nonlinear
illustrated on Fig. 2 in the context of the cylinder-wake ex- regime'® involves the evolution of localized perturbations of

FIG. 2. Streakline of a passive tracer visualizing the impulse response in a cylinder wake at several times. In this waterfall presentation of an experiment by
Le Gal and Croquett¥ time is running from the bottom to the top picture by regular step increases. The Reynolds nufibeBRés subcritical, but local

instability causes a finite-amplitude wave packet to develop in space and time. The passive scalar is strongly and rapidly displaced. Courtesy of Le Gal and
Croquette.

Downloaded 13 Jan 2003 to 192.44.78.87. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2726 Phys. Fluids, Vol. 10, No. 11, November 1998 I. Delbende and J.-M. Chomaz

although it is linearly convectively unstable. Note also that,
since the nonlinear wave packet contains the linear wave
packet, linear absolute instability necessarily implies nonlin-
ear absolute instability, which, for instance, forbids the sce-
nario sketched in Fig. (8.
The above notions have found an illustration in
SNy 2~ Taylor—Couetttand Rayleigh—Beard experiments in open
, d > flow configurations. The stream forced in the akialr
) H A horizontaf direction, normal to the primary instability rolls
7‘ RN (Ref. 1 accounts for a two-dimensional simulation while in
@ > @ 2 @ . m p Ref. 2 expenm_ental results are repobteph both instances,
the front selection was observed to be linear. These findings

FIG. 3. Typical impulse responses of a homogeneous medium illustratingustify the use of linear criteria in the prediction of resonance
(@—(b) linear and(c)—(f) nonlinear velocity selection. In casé®—(d), the in such systems.

convective/absolute nature of the flow is preserved from the linear to non- However. it should be noted that in the above studifes
linear regime [convective for(a) and (c), absolute for(b) and (d)]. By ! !

contrast, casde) illustrates linearly convective and nonlinearly absolute th€ superimposed throughflow is small and that the behavior
instability. The reversdf), linearly absolute and nonlinearly convective may thus be described in a weakly nonlinear framework by a
instability, is impossible. Ginzburg—Landau amplitude equation. The validity of linear
criteria for front selection is therefore not surprising. By con-
trast, shear flows such as bluffoody wakes present local in-
finite amplitude. The generated wave packets may then bstability growth rates of order unity, as advection and shear
bounded by two fronts of fixed shape propagating at velocicannot be monitored independently. Their behavior shauld
ties UQL. By analogy with the linear case, the instability is priori be affected by strongly nonlinear effects, since at the
nonlinearly absolute if a wave packet exists for whidt  threshold, the wave packet amplitude is also of order unity. It
and v"\" have opposite signs. Otherwise, it is nonlinearlyis hence worth examining the existence of fronts separating
convective. the basic unstable state from the saturated bifurcated stable
The relation between linear and nonlinear convectivetate, and also investigating the influencestrbng nonlin-
absolute instability notions is nontrivial and can be associearitieson front-velocity selection impen shear flowsSuch
ated with the concept of front-velocity selection, which hasa study is undertaken here in the context of two-dimensional
been extensively studied in the past dec®d& Consider a symmetric parallel wake profiles introduced by Monkewitz
small-amplitude perturbation initially localized within an un- and Nguyert! The strong nonparallelism of realistic bluff-
stable medium(Fig. 3). Initially, the disturbance grows ac- body wake flows is deliberately ignored, since we wish to
cording to linear instability theory, and its edges propagate afocus on the effects of nonlinear terms. We find that, for the
the linearly selected velocities. . As the exponential selected family of wake profiles, front selection is governed
growth becomes compensated by nonlinear terms, the wagy linear mechanisms. It should be emphasized that linear
packet saturates while the linear edges transform into nonlirfront-velocity selection isio generic feature of nonlinear me-
ear fronts. Dee and Landérhave proposed a “marginal dia and that nonlinear selection has been observed in other
stability” mechanism, also interpreted as a dynamical pro-experimental situations, such as chemically reacting
cess for linear front-velocity selection by van Saarlébms system&* and liquid crystalg>
which the fronts of the nonlinear wave packet simply propa-  This paper is organized as follows. The numerical as-
gate at the same speed as the linear precursor eddes ( pects of the simulation as well as investigation techniques
=v.), as sketched in Figs(8 and 3b). This mechanismis are presented in Sec. Il. Linear temporal and spatiotemporal
based on the assumption that the infinitesimal perturbationgroperties are retrieved from DNS in Sec. Il for two differ-
preceding the front necessarily comply with the linear dis-ent wake configurations: a strongly confined periodic wake
persion relation and dictate the entire front dynamics. Nevand a weakly confined wake. The nonlinear wave packet
ertheless, in some situations, the wave packet saturatiogvolution in both configurations is presented in Sec. IV. Con-
causes a different front with higher velocity to emerge, aglusions regarding the validity of linear theory at the global
shown by van Saarlod$. The selection is then said to be instability threshold are discussed in Sec. V.
nonlinear, as it is imposed by the nonlinear saturated region.
In the case of nonlinear velocity selection, which naagri- II. NUMERICAL ASPECTS
ori occur for the leading and/or the trailing front, the nonlin-
early selected front velocinyﬂL necessarily lies outside the
range of velocities[v_,v.], (i.e., v""<v_ and/or v"\"- In all the following, the basic wake is assumed parallel
>v,), as sketched in Figs.(§—3(e). Otherwise, a linear in the streamwise direction, and the streamwise velocity
front could emerge and propagate at the linear edge velocitpomponentU depends solely on the cross-stream coordinate
v+ . This property implies, in particular, that the flow may bey. The wake half-widtHD/2 and the free-stream velocity,,
linearly convectively unstablev(_>0) and nonlinearly ab- are used to make distances and velocities dimensionless. Let
solute unstabley(™-<0) [Fig. 3(e)]. In such a situation, the U=U(y)x and Q=V xU denote the velocity and vorticity
flow may bifurcate toward another state such as a limit cyclepf the basic flow. The evolution of velocity), vorticity (w),

N

s‘z—_,

A. Direct numerical simulation technique
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and pressurép) disturbances is governed by the incompress- o X2 (Y—Yo)?
ible two-dimensional Navier—Stokes equations written here  uUy=-—73 X ex;{ —< 2t —— 27— ”
. : o oo Ox 20 20

in velocity/vorticity formulation:

<N

y
The initial perturbation takes the form of a small vorticity

&—U=UXQ+UXw+uXw+V p+u-U+ U_2 spot chated at =0, yzyo). The distribution enyelope is
at 2 Gaussian and has a typical extent along thex direction
1 and o, along they direction. The length scales, and o,
+— V2, (1)  musta priori be taken as small as possible, as the initial
Re conditions should take the form of a delta function. Never-

where Re designates the Reynolds number based on tﬁréeless, the valuesy=0.4, #,=0.6 have been chosen in

above reference scale@the correspondence R&®ReD)2 order to ensure satisfactory sampling in the truncated spectral

hold$. Note that the diffusion acting on the basic flow is space. In this manner, the initial perturbation at least contains

assumed to be compensated by a body force and that tﬁleII the physically relevant wave numbers, as checkebs-

corresponding term Ré V2U has thus been removed ) teriori. Moreover, it is centered at,=0.5 in one of the two

as is often done in theoretical studies in order to mak7e thgvake shear layers, so that no particular symmetry is enforced
problem autonomous. In particular, it allows direct compari-On the solution by the initial conditions.

sons with the alternative branch-point analysis by

merical procedure here consists of a pseudospectral code ) ) ) o

originally written by Vincent and Meneguz%,adapted, op- A set of linear simulations is first performed whereby
timized, and validated by BrancRérto two-dimensional the linear instability properties of the basic flow under inves-
rectangular domains. Details on the numerical technique cafi@ation can be derived. The evolution of an initially local-
be found in Ref. 28. The Fourier formulation enforces peri-2€d perturbation is simulated according to the Navier—
odicity of the system along both the streamwisand the Stokes equation linearized in the vicinity of the basic state,

cross-streany directions. Collocation points are distant by 1-€- E-(1), in which the termsiX @ andVu?2 are omitted..
8x=6y=0.1. The physical domain made up of 1024 or 204gThrough the _analy5|s of the simulated wave packet_ descr_lped
points alongx is chosen long enough to ensure that the Ioer_below, _the Ilnear_temporal and spatiotemporal instability
turbation remains localized far away from the streamwisd’TOPerties are retrieved. _
boundaries during the total simulation time and that the re-  1he theoretical treatment of the associated Orr—
sults are indeed unaffected by streamwise periodicity. In theommerfeld eigenvalue probléfrassociated with the sym-

following, two different cross-stream box widths are succes-metric velocity profile(2) reveals the existence of a discrete
sively adopted. For the first ond,,=4.8, the wake is set of branches parametrized by the streamwise wave number

strongly confined between two adjacefidentica) wakes K They pertain either to varicose modes for which the vor-
situated 2.4 diameters apart. For the second bye;25.6, ticity eigenfunction is symmetric with respect to tReaxis,

the domain is wide enough, so that the computed solutionS" to sinuous modes, for which the vorticity eigenfunction is

satisfactorily approximate the dynamics of a single wake jrAntisymmetric. The contributionssj, and wye, of sinuous
an infinite medium. and varicose modes, respectively, to the perturbation vortic-

The basic wake profile adopted here has been elaboratdy @ can be separz.ated easily by considering the even and
by Monkewitz and Nguyeh! The streamwise component of 0dd components o

velocity is given by wsin(%,y, )= Ho(xy,0)+w(x,—y.0)], @
1 XY, 1) = o(xy,t)—o(x,—Yy,1)]. 5
1+sinkN|y sinh™4(1)] Each contribution can then be considered independently. The

procedure is detailed below for the sinuous part, but the same

Since the centerline velocity, is chosen to be zero, the holds for the varicose part.

velocity ratioA=(Uy—U.)/(Uy+U,) is A=—1 through-

out the study. Results for othér values can be obtained by 1. Témporal instability, analysis in spectral space

Gallilean transformation. For the selected valueNpfeach In the temporal formulation of instability problems, a
vorticity layer is (well) sampled on ten mesh lines approxi- real wave numbek in the x direction is prescribed and the
mately. This wake profile has also been considered by Delfgorresponding complex frequeneys,(K) is sought. As ex-

et al,” who used a vortex blob method to simulate the in-plained in Branche?’ the simulation of an initially localized
viscid and viscous response to a localized pulse for differenfmpulse generates a wave packet with a broad spectrum

values of the velocity ratio\. _ structure(see, for instance, Fig.)4By considering the evo-
The computational field is initialized by the divergence-|ution of the spectrum in time, one may recover in a single
free velocity disturbance(x,y,t=0) with components: run the leading temporal instability properties of the basic
2 2 flow prevailing for each streamwise wave numker
X (Y~Yo) The procedure is applied here on the perturbation-
Ux==(y=Yo)exp —| 5=+ ——2—||, P PP P
Oy Oy enstrophy spectrum:

)
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0" —0—— with a typical instability wavelength, smoothly modulated in
E E space by an amplitude functigwhich is as smooth as de-
107 sired provided that time be taken sufficiently large The
S perturbation spectrum then adopts a band structure that al-
10 lows us to carry out the following procedure. First, the con-
€sin tribution of all Fourier modes with negative wave number
10 k<0 is set to zero in spectral space in such a way that one
10° recovers the usual complex exponential formulation. In
physical space, the imaginary part associated to the real sig-
10° . . . nal wg(xy,t) is recovered by a spatial Hilbert transform
0.0 0.5 1.0 1.5 2.0 along the streamwise direction, as in Ref. 27:
k
i
FIG. 4. Perturbation spectrum, of the dominant sinuous mode as a func- Wgin(X,Y, 1) = ( o(x) + P * wgin(X,Y,t)
tion of real streamwise wave numblerThe curves are extracted from the
ir;gl:;%dl_yvia:; impulse response at several times,12,...,40 for Re EAsm(X,y,t)e"Psin(x’y't), (12)

where* designates the convolution operatoninAg(X.y,t)
12 the amplitude, andpg,(X,y,t) the phase within the wave

Esin(K, )= f+w|6)3-n(k,y,t)|2 dy| , (6) packet.
| 0 I The real amplitude functiog,(x,t) of the dominant

. . sinuous mode is obtained by integration along the cross-
which measures the amplitude of the temporal wave undesrtream direction according to the formula
consideration. According to temporal instability theory, the Y 9

above variable is known to evolve asymptotically for large Ly2 12
times as Asin(X,t)= . Asn(xy,tdy| . (12
i sinK
esin(K, t)oce?istht oo, (7) " This quantity can be shohto behave asymptotically as

where w; 4,(K) denotes the leading temporal growth rate at Agr(x, 1)t~ V2ersilvg)t,

vg=Xx/t=const, t—o
wave numbek. Converselyw; (k) can be expressed as

(13

In the above equationgg(vy) designates the real growth
rate of the sinuous mode dominating the dynamics along the
Ja X/t=vq. It can be calculated as follows:

J
wi,sin(k)"“ﬁ In esin(k,t), t—oo, (8)

If w; sir(K) is well separated from the other eigenvalues of
smaller growth rate, it is possible to obtain its value from the 1o

computed spectrum distributiogy,(kt) for large times, by Tsin(Vg)~ 7 N[ Asin(vgt, D], t—ce, (14)
making use of the discretized form (8):

~ ln[esin(kytz)/esin(katl)]
t—1t '

or, in discretized form,

9 ‘ _
9 O'Sin(l)g)~ ln[Asm(Ugt2 attzzltAsm(vgtlrtl)] +ooltyoty),
Due to the spatial discretization, the corresponding temporal 2 (15)
growth ratew; 4i(K) can be numerically determined in the
range — 7/ Ox<k<<w/éx in successive steps of sizék
=2m/Ly. In(t,/t;)

In order to validate the above procedure, one checks the oo(t1,ty)= 2=ty (16)
convergence ob; ¢i(K) for severalt, , values. It is also nec- 2
essary to make sure that the corresponding eigenfunction, is a finite-time correction arising from tie /2 factor in Eq.
(13). For the values of; andt, adopted in the following,

Wj sin

where the term

qbsm(k,y,t):M, (10) oo(t;=361,=40)~0.013. This term was omitted in Ref.
Esin(K,t) 28, thereby slightly underestimating the spatiotemporal
is indeed shape invariant in time. growth rates without, however, affecting the results qualita-

tively. It has been included here, because its contribution as
a constant is not negligible in relative magnitude, especially
for nearly neutral modes.

At a given timet, the real part of the complex local wave

2. Spatiotemporal instability, ray analysis

The spatiotemporal formulation is concerned with the
determination of the Green’s function, or equivalently, with | )32 K, <, can be evaluated on theaxis (at y=0) as
the instability modes of given real group velocity. Itis  ¢jows:
thus necessary to investigate the wave packet structure in

physical space, as these modes develop along the spatiotem- _ 9%sin ny 1 Jwgp
poral rayx/t=vy. This can be done unambiguously since Kr sin(X,t) = IX (x.00)=7%e iwgn, X (x.00)7.
the impulse response consists of a spatially oscillating wave (17)
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The calculation of the derivative with respectxan (17) is 0.2 —
implemented in spectral space, where it reduces to a multi-
plication byik. Asymptotically for large timeskg;, depends wmax [
solely on the group velocity ,=x/t. bt

Again, the validation of the above procedure involves a
convergence check when using relatiq) and (17). The
time invariance of the normalized eigenfunction,

wsin(X:Ugt,yyt) 0.0 max c.o.\

0.1

Wi sin

Agn(X=v4t,t)e/#00D” (18 | .Sin. | <0

0.0 0.5 1.0 1.5 2.0
k

¢(Ug 1y1t):

must also be ensured.

FIG. 5. The temporal growth rai@; g, of the sinuous mode, as determined

from the wake impulse response for each Fourier compokearitRe=20
Nonlinear effects, via the reintroduction of the term andL,=4.38.

uX w, have two consequences. On the one hand, this product

displays a symmetry opposite to that of the sinuous modes . . ,

which thus forces a varicose contribution to the impulse re.The corresponding sinuous mode growth raigy, is ob-

sponse. On the other hand, it generates small wave numbef@ned through formuld9) applied betweert; =36 andt,

that destroy the previous band structure of the perturbation 40- The temporal growth raw; s, is plotted as a function

spectrum. In such cases, the Hilbert transform procetiiye of wavemgxumbek in Fig. 5: the curvealeaches its maximum

no longer leads to the retrieval of the wave packetV@lU€®isn=0.132 at wave numbéegi*=0.750. All modes

I,SIn Sin
envelop€e® since it artificially expands the wave packet. In Wc'toh wave numbers larger than the “cutoff” wave number
order to circumvent this difficulty, it is convenient to study Ksin=1.374 are damped.
the behavior of the rms local enstrophy(x,t) (hereafter ] ] o
simply called enstrophydefined at each streamwise location 2- Spatiotemporal instability
x and timet by In order to determine the spatiotemporal instability prop-
L2 12 erties of the flow, the physical perturbation vorticity field is
ﬂ(X,t):(f wz(x,y,t)dy) (199 observed on each spatiotemporal relf=const=v,. The
—Lyl2 evolution of the amplitudedy, corrected by the factort?
This quantity satisfactorily accounts for the wave packet amktsee Ed.(14)] is presented in Fig. 6 as a function of group
plitude. [However, the carrier wave is thereby not fully fil- Velocity vg. It can be seen that the set of amplitude curves
tered out. As a consequence, curves generally exhibit €xhibits two turning points, at_ andv .., indicating that the

wiggles(see Figs. 15, 17, and 20vhich may provide some Wave packet grows between two well-defined edgés
information on the wave packet phake. =v_ andx/t=v, . The precise values of the edge velocities

v_ andv, are determined by computing the corresponding
growth rateo;, via formula (15), applied betweer;=36
andt,=40. The spatiotemporal growth rate of the sinuous
A. Strongly confined periodic wake  (L,=4.8) modeoy, is plotted in Fig. 7 as a function of group velocity

In the first simulation, the downstream and cross-strearfg- 1€ shape of the spatiotemporal growth-rate curve 1s
sizes of the computational domain have, respectively, beel®y close to that of a parabola. The maximuang;;
selected to b ,=102.4 andL,=4.8. For such a strong =0.132 is observed along the rayt=0.51. The maximum
confinement L, /D=2.4), the periodic boundary conditions
alongy impose a strong coupling between adjacent wake
images. The linear evolution of the initially localized distur-
bance(3) is computed up to timé=40. The modal decom-
position formulag4)—(5) are applied to the perturbation field
at several times during the simulation for both sinuous and
varicose contributions. For the basic velocity profile under
consideration(2), only the sinuous inviscid-like mode is
found to be linearly unstable at the selected Reynolds num-
ber Re=20. In the following, we therefore focus solely on
this dominant sinuous mode.

C. Analysis of nonlinear simulations

IIl. LINEAR IMPULSE RESPONSE

1. Temporal instability 0.0 05 1.0
The perturbation spectrurgg(k,t) extracted from the T/t =g

simulation !S pIOtted in Fig. 4 at several times FIG. 6. Time-corrected amplitudé”A;, of the sinuous mode as a function
=8,12,...,40: temporal modes are seen to grow or decay eX group velocityv , at several times=8,12,...,40. The amplitude has been

ponentially according to the magnitude of the wave numbertetrieved from the direct numerical simulation at-Re0 andL,=4.8.
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max kC'.O.\
Sin Sin \
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zft=1vg k

FIG. 9. The temporal growth raie; g, of the sinuous mode, as determined
from the wake impulse response for each Fourier component of wave num-
ber k at Re=20 andL,=25.6. The dashed curve pertains to the chge
=4.8, as plotted in Fig. 5.

FIG. 7. The spatiotemporal growth rate;, of the sinuous mode as deter-
mined from the results of Fig. 6 at R0 andL,=4.8.

value 002 can be shown by constructidto coincide with .
the maximum temporal growth raie2. The agreement B- WeaKly confined wake (L ,=25.6)
between the two values determined numerically is seen to be |n order to simulate the dynamics of an isolated wake,
better than 1%, and constitutes an internal coherence cheg¢ke cross-stream box size was widened_{e=25.6 (L, /D
for the method. The trailing and leading edges, which by=12.8). A linear simulation is performed in this wider do-
definition sustain neutral waves, are the spatiotemporal rayigain for the same initial perturbation fie(8) and Reynolds
x/t=v_=0.053 andx/t=v ,=0.95. The growth-rate curve number Re=20 as for the confined case. The perturbation
is almost symmetrical with respect to the central sdy  was checked to decay rapidly enough wiigh so that at the
=0.51. This feature can be explained by the fact that thyoundariesy=*L,/2 the velocity and the vorticity almost
cross-stream box size,=4.8 is close to the valuey,=2D  vanish. This check ascertained thatperiodicity induced
=4 for which the basic flow velocity is invariant under the negligible coupling between adjacent wake images. The
transformationU—1—U, which would enforce the reflec- same decomposition and analysis procedure as in Sec. Ill A
tional symmetry of the impulse response with respect to thgs applied. For the velocity profil€2) under study, only the
ray x/t=3. sinuous mode is found to be unstable. The temporal growth
It is also possible to extract the streamwise wave numbefate w; si(K) slightly differs from the casé¢.,=4.8, as dis-

as a function ok/t via formula(17), as plotted in Fig. 8. The played in Fig. 9, where both curves are plotted. The maxi-
maximum amplification, obtained fary=0.51, is associated mum growth rate is somewhat small MaX—0.107 atk$>
with the wave number valu [’f?fﬁ]:O.M, in agreement with =0.710. The cutoff wave number is reduced kGo

the value 0.75 previously obtained through the temporal ap=1.320.

proach. Furthermore, the wave number extracted by the Hil- The linear growth rate on the spatiotemporal rays
bert transform procedure was checked to coincide with direct:vgl determined withL,=25.6 is compared to the curve
wavelength measurements deduced from zero crossing of thgtained withL,=4.8 (dashed lingin Fig. 10. The shape is

perturbation vorticity along the symmetsy axis at timet  siill quasiparabolic, but the wave packet spatial extent is seen

=80 (Fig. 8. to be substantially reduced. Both trailing- and leading-edge
1.5 T T T T 0.2 T T y T
10+, . - Tsin” AN |
kr’sin k:?sfl_:\_\_i\h?‘\.\'\. Osin

05t : o

|
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FIG. 8. The real park, q, of streamwise wave number, as determined from FIG. 10. The spatiotemporal growth ratg;, of the sinuous mode, as de-

the wake impulse response as a functiorktif=v, at t=40, Re=20, and
L,=4.8. —: extraction via formulg17); @: direct measurement on the
vorticity field.

termined from the wake impulse response on each spatiotemporaltray
=vg4 at Re=20 andL,=25.6. The dashed curve pertains to the chge
=4.8, as plotted in Fig. 7.
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FIG. 11. Critical values of the velocity ratid . for convective/absolute
transition, for different values dfl and Re. The continuous lines taken from
the study by MonkewitZ,Fig. 4, are obtained by saddle-point tracking. The
symbols denote criticak . values deduced from the trailing edge velocities
v_ obtained by DNS for Re20(®), Re=40(H), Re=100(A), and Re

=200(V).

FIG. 12. The real paik, g, of streamwise wave number as determined from
the wake impulse response as a functiorxtif=v, at t=40, Re=20 for
L,=25.6.—: extraction via formulgl7); @: direct measurement on the
vorticity field.

IV. NONLINEAR IMPULSE RESPONSE

velocities, respectively, decrease to.=0.016 anduv ., h Nk())nlmearsm?lat;ﬁns have_b_et_e? per(];(')tgmeir:n each of
=0.82. It is surprising that in spite of the fact that the mean, € above cases lor the same initial condi € non-
linear termuXx w, Nnow included, causes the wave packet to

basic velocity is larger in the cagg=25.6 than in the case twurate aft initial ial th. The infl ¢
L,=4.8, group velocities have globally decreased. In par—Sa urate after an initial exponential growth. The infiluence o

ticular, the trailing-edge velocity has decreased, thus promott-he Isat_uraélclrr]] on t?e edtge dynirzugs IS (;nl_\/e_stzlgsaéed_riucces-
ing the absolute character of the instability. The xéy=1is >l In both configurationsl.,=4.8 andL,=25.6. The

no longer a symmetry axis for the curve, as the invariancéJonllnear ‘efm also breaks the symmeyry: —y and sinu-
under the transformatiot)—1—U no longer holds. Be- ous and varicose modes cannot be treated separately. More

sides, the weakly confined wake is less unstable than thgreusely,katv?rlcose Watve packgt eX'StS'tbl:)t ;[_he sihuous
strongly confined one, sinagla*=0.107 instead of 0.132. Wave packet aiso generates a varicose perturbation.

The value of the trailing-edge velocity_ can be com-  A. Strongly confined periodic wake  (L,=4.8)
pared with the result obtained by Monkewitazy direct ap-
plication of the Briggs—Bers criteridfon the viscous dis-
persion relation. From his Fig. 4, a critical velocity ratio for
the occurrence of absolute instability &S = —1.02. The
relationship between the present value andA. is given by

The nonlinear evolution of an initially localized pertur-
bation in the strongly confined wakd (=4.8) has been
simulated at the same Reynolds number=R6 up to time
t=280. Isocontours of the total vorticit2 (y) + w(X,y,t) are
plotted in Fig. 13 at several times. Note that in the stream-

_ _ -1 . . . - _
%ﬁ._ (AZU* Il) ,I W:_'f?h mb o‘iE/C?SM'SI)dg_\I_; 1.03. wise x direction, only the central region of the domain has
'S A value only differs by 1% from\c™". The present oo, represented. The initial pulse is merely visible on the

method of investigation has been further validated by similag) ., - graph ax=0. The perturbation both increases in

cqmpdarflsolgs_f;r glffezrgnt 4\6alli%% Nzggd Rg. fThethia(t)al\?b— amplitude and develops in space, as may be seen from the
tained forN=2, Re=20, 40, ’ ana for ’ cillations of the isocontours. Ne&+ 40, the oscillations

.0
=1,14,2, ,3 havg been superposed on thg results Obta'n?gach the amplitude of the basic flow, and vorticity begins to
by Monkewitz in Fig. 11. In all cases, a satisfactory agree-

tis obtained. Thi p th lidit q effici froII up into counter-rotating vortices. Far=60, several
mentis optained. 1his confirms the vaildity and efliciency o wavelengths of a quasiregular pattern can be distinguished,

the present procedure based on direct numerical simulationﬁ1e number of which increases as the wave packet spreads

It also c_or_1f|rms the convergence of the r_neth_od, as w_el_l aBut along the streamwisedirection. The time evolution of
the negligible effects of finite-time approximation and finite the rms perturbation vorticity over the entire domain
box size, particularly in the cross-stream direction. ’

The most important difference between the linear insta-
bility properties of the weakly and strongly confined wakes @ (t)=
arises from the real pak; 4, of the wave number, as repre-
sented in Fig. 12. Near the leading edge=0.82, the wave- is presented in Fig. 14. After a transient peride(0), the
length is seen to diverge—although, strictly speaking, theperturbation undergoes an exponential growth<{1€35).
Hilbert transform procedure fails to separate phase and anburing both periods, the system evolution is governed by
plitude near such points. The oscillatory behavior of thelinear instability mechanisms, and the curegt) follows
wave packet ends near the leading edge, thus forbidding thtbe dashed curve obtained in the linear simulation presented
formation of new vortices feeding the wave packet fromin Sec. Ill A. The wave packet then undergoes a saturation
downstream. process (35t<55), during which the energy growth is sub-

1/2
ffwz(x,y,t)dxdy , (20
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FIG. 13. Isocontours of the total vorticity distributida(y) + o(x,y,t) at several time$=0, 20, 40, 60, and 80from bottom to top for Re=20 andL,
=4.8. Solid isolines pertain to positive levels 0.25, 0.5, 0.75, and 1. Dotted isolines pertain to negative (&26ls-0.5, —0.75, and-1. The computational
domain has been cropped to a shorter streamwise ext&f&x<80 (for the original domain,—20<x<184.8).

stantially reduced. Eventuallys grows linearly as a func- packet phase(x,y=0\) is constan{and from one line to
tion of time while the saturated wave packet spreads out ahe next alternatively equals 0 amd. (As the antisymmetric
the constant extension rapd-—y"N-. part of the perturbation vorticity vanishes on the centerline,
This saturation process may also be followed on the wathis procedure provides information on the sole symmetric
terfall plot of Fig. 15, where the rms enstrophyis plotted  part, i.e., the sinuous compongniVithin the wave packet,
as a function ok at several times. The wave packet spreadthe phase velocity is seen to lie between the two front ve-
ing is clearly seen on the seven top curves. The two edgdscities. As a consequence, new vortices form at the trailing
delimiting the wave packet in Fig. 15 have been determineedge,but alsoat the leading edge of the wave packet.
by following the constanty levels prevailing at the linear In order to examine precisely the effect of nonlinear
stage (<35). It can be observed that, in the nonlinear re terms on the wave packet edges, the enstrophy curves
gime (t>35), the propagation of the two edges seems unaf#(x,t==80) obtained by linear and nonlinear simulations at
fected by the wave packet amplitude saturation. Xhet t=80 are superposed in Fig. 17. The comparison of the two
diagram of Fig. 16 displays the paths along which the cen-
terline vorticity w(x,0t) vanishes, i.e., along which the wave

n(z,t)
L T T K4 T 80. M"\v_
10 F @ Swo /7 3 o Sy ia
B 00
E o =1
.0 258 60.
Z. 937 —SINA
g %85 N AN
100 | =} ¢ o o0 » t40 MI/
® § ! g¥ =
I —"
= 2 z 8 20. 7
10 3 28 3 7
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FIG. 14. Temporal evolution of the rms perturbation vorticity for Re FIG. 15. Waterfall plot of enstrophy in the x-t plane at Re-20 andL,
=20 andL,=4.8. =4.8. The wave packet edges are also represented.
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0. Croquette’® passive tracer particles have been regularly
spaced on th& axis att=0, and their evolution is followed
by implementing a predictor/corrector algorithm. As seen
from the plot att =80 in Fig. 18, the separation of the initial
line into small parts under the effect of rollup is evident, as
in Fig. 2. One should note, however, that contrary to experi-
ments, the present wake profile is independent of the stream-
wise x direction. Possibly as a consequence of this fact, the
wave packet is found to be far less regular than its experi-
. . mental counterpart of Fig. 2, and the vortex street eventually
0. 50. 100. becomes disorganized for large times, as can be seen in the
z neighborhood of the downstream fronttat 100 in Fig. 18.
FIG. 16. The spatiotemporad—t diagram presenting the isophase paths The spatiotemporal—t diagram of Fig. 19 confirms the
along whiche(x,y=04t) =0, at Re=20 andL,=4.8. Bold lines represent  €Xistence of an instability in the saturated region. In this
wave packet edges. isophase representation, a vortex merging event corresponds
to the loss of one wavelength, and appears as the annihilation
of two adjacent lines. Such a vortex merging is seen to take
curves clearly demonstrates that both amplitude and phasgiace att~100 (arrow Q. Note that, contrary to what hap-
obtained by linear and nonlinear simulations coincide accupens in the strongly confined wake, no additional wavelength
rately on each wave packet edge over more than four enstrgs created from the downstream side through the leading
phy decades. This situation corresponds remarkably to sceront of the wave packet. This feature is also observed in the
narios (a)—(b) in Fig. 3. The nonlinear terms just cause the experiment of Fig. 2: the wave packet ends abruptly in a
amplitude to saturate in the wave packet core, while theully developed vortex, which remains the same during the
phase is left unchanged from linear to nonlinear simulationsentire observation time. The steepness of the leading front is
as could also be checked by direct comparison of the 2-Iho nonlinear effect, but can be accounted for by linear con-
vorticity fields. As a consequence, both front velocitied  siderations: as the linear wavelength becomes infinite at the
are seen to be purely enforced by the linear instability propteading edgésee Fig. 12, phase velocitg and group veloc-
erties of the medium. For the strongly confined periodic parity vg tend to coincide since
allel wake, the linear front-velocity selection of Dee and

60.

t 40.

20.

Langef® holds: 0 o ) 0 g 0. 22
c=———=v,, when w,k—0 and c#0.
oi=v.. (21 k ok 79
Consequently, the convective/absolute nature of this flow ishis relation prevents the creation of new vortices at the
preserved from the linear to nonlineagiee. leading edge where isophase lines become parallel to the
edge.
_ In Fig. 19, the edges have been determined as previ-
B. Weakly confined wake (L ,=25.6) ously. In the nonlinear ‘gime (t>60), the leading edge

Isocontours of the total vorticity fiel@(y) + o(x,y,t),  S€ems to depart from its linear counterpart. This phenom-
obtained in the nonlinear simulation for the weakly confinedenon is analyzed by comparison of the enstrophy distribution
wake atL,=25.6, are displayed in Fig. 18 at several times.curvesz(x,t=80) obtained from linear and nonlinear simu-
Only the central region of the computational domaixiand  lations[Fig. 20@)]. Figure 2@a) reveals three main differ-

y has been represented. As in the experiment of Le Gal an@inces with respect to the cakg=4.8, as indicated by the
three arrows. A vortex-merging event can be spotted by the

irregularity of the enstrophy curvéndicated by arrow €

10° . . . : Moreover, both nonlinear fronts are seen to differ from linear
, F ones(arrows A and B because of enstrophy excesses present
10 3 linear 1 at both wave packet ends. These enstrophy excesses have
10" 1 both been observed to consist of zero-wave number pertur-
10° ] bations, but their symmetry differ. The perturbation at the
110" r ki 1 leading edge(arrow B) displays the symmetry opposite to
> F that of the basic flow: it consists of a slight shift of the shear
107 ¥ 3 layers. By contrast, the perturbation at the trailing etaye
10° . 1 row A) has the same symmetry as the basic flow: it consists
10" E . ! . ] of a slight pinching of the basic wake.
0.0 0.5 1.0 It is of interest to further investigate the “sinuous” con-
z/t tribution to the wave packet, which is known to give rise to

FIG. 17. Enstrophy distribution as a functionxdt at timet=80 for linear the altematmg vortices typlcal of the von Haan street. The

(thin curvé and nonlinear (bold curvé simulations at Re20 and  Sinuous” enstrophy computed by formuld9), wherew is
L,=4.8. replaced bywg;, is plotted in Fig. 2(b). From the compari-
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FIG. 18. Isocontours of the total vorticity distributiéd(y) + w(x,y,t) at several times=0, 20, 40, 60, 80, and 100 for R0 andL,=25.6. Solid isolines
pertain to positive levels 0.25, 0.5, 0.75, and 1. Dotted isolines pertain to negative +e¥@!s, —0.5, —0.75, and—1. The computational domain has been
cropped to shorter streamwise and crosswise exterif8<x<80 and—5<y=<5 (for the original domain,—20<x=<184.8 and—12.8<y<12.8). Fort
=80, the dispersion of passive tracer particles initially equispaced on the centerline has been represented.

son with the enstrophy curve obtained from the linear simustrictly superpose at the trailing edge. This is also clearly
lation, also plotted, it is clear that the trailing front of the seen in Fig. 19, where the vortex front represented by a
“sinuous” part of the wave packethe “vortex front”) is  dashed line exhibits a constant slope. This feature indicates
linearly selected, as both linear and nonlinear curves nowhat linear front-velocity selection_=v"" holds when the
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C fronts are both linearly selected, according to the Dee and
\ B Langef® mechanism. In the case of a weakly confined wake,
i the wave packet dynamics were found to be affected by long-

1

100. 7

a / ! wavelength perturbations and instabilities. However, the up-
(
{

N

80. /XM . streamvortex front isolated by considering the “sinuous”
component of the wave packet only, was shown to be lin-
60. p ] early selected. In that case, the vortex street was observed to

b
f
¢ , } ] be irregular and unstable to vortex merging. The drastic re-
1}
)

40. ] duction of the cross-stream box size ltg=4.8 effectively
[ ] quenched the pairing instability and a regular stable vortex
20. . . .
| ] street was obtained. This study has presented the case of a
0 v . . . system governed by the Navier—Stokes equations, which is
) 20. 40, 60. 0. highly unstable toward infinitesimal perturbations, and from
z which a stable saturated state arises in the form of a fully

FIG. 19. Spatiotemporak—t diagram of isophase lineg(x,y=04) developed vortex street. The present configuration is the ana-
=0,7. The wave packet edges are represented in (saiid line: full wave 109 for a real flow of the idealized front dynamics investi-
packet; dashed line: “sinuous” component ohirrows A and B pointto  gated until now in the context of amplitude evolution
the regions analyzed in Fig. 20. Arrow C points to the merging event. equation§.1'22’19'35’14NonIinear terms are found to limit the
amplitude at some saturation level in the wave packet core,

sole sinuous contribution is considered. The upstream vorteRut have no effect on the wave packet propagation. The
front then follows the linear selection mechanism, eVenfro_n_t-velocr[y selection is thus linear for both leading and
though the vortex street downstream of its displays strondrailing edges. _ _
nonlinearities, and though it is itself unstable and susceptible In the case of a weakly confined parallel wake, the situ-

to merging events. ation is somewhat complicated by the vortex-street instabil-
ity. The existence of a well-defined front traveling at con-
V. CONCLUDING REMARKS stant velocity isa priori not expected in that case. Indeed, a

) ] . zero-wave number deformatidiantisymmetric in vorticity
The linear and nonlinear impulse response of paralleht the ypstream front is observed, which does not seem to be
wake flows has been investigated by direct numerical Simujnyeq directly to a vortex-pairing process. This deformation
lation. In the case ofa strongly confined p_er|0d|c wake, I'F ha%/vas checked not to depend on the grid séemnd cannot be
been shown by direct comparison of the linear and nonlineag iy, 1eq to a numerical artifact. It is likely that, in a realistic
wave packet evolution that the upstream and downstréarn, fiqration, the presence of the bluffbody would suppress

this deformation. Thus, it seems plausible to base the “vor-
2 tex” front velocity on the sinuous component of the wave

101 F ' ' ' ' ] packet. The application of the procedure shows that the
10 ¢ linear G () 1 vortex-front velocity is linearly selected also in the weakly
10° 1 1 confined configuration. Under these restrictions, the linear
107" ] convective/absolute instability threshold corresponds to the
010> F nonlinear B 1 nonlinear convective/absolute instability threshold.
» E The linear front-velocity selection has been found to take
10 / 1 place forall values ofN and Re(see Sec. Il B, pertaining to
107" 1 far-wake (N=1,1.4) as well as near-wakéNE 2,3) basic
10° ! . L \ profiles and covering a relatively large range of advection
10" ¢ . . ' . . levels. Therefore, in the family of profile€), the linear
F 3 convective/absolute transition should coincide with the non-
100 ¢ ¢ (b) 3 linear one. Linear spatiotemporal instability properties have
10° k 1 been recently showf to successfully predict transition in
107" , , nonparallel flows such as wakes. Although the present study
Tein 10°° r B 1 is res_trlcte(_d to parallel flow |r_lstab|I|ty, we _conjecture that it
5 f explains this success qualitatively, as nonlinear effects do not
107 F / 1 affect the absolute instability threshold.
10" / 1 Front dynamics has previously been investigated in
10° E N Taylor—Couetté and Rayleigh—Beard systems with a
0.0 0.5 1.0 small superimposed throughflow. In such weakly nonlinear
z/t cases, an amplitude equation approach is legitimate, and one

FIG. 20. (a) Enstrophy and (b) the “sinuous” part 7, of enstrophy expects to recover the fr%ca)rnt—velouty selection criterion pro-
distributions as a function ot/t at timet=80 for linear(thin curves and ~ POS€d by Dee and Langerin the present Stud_y, Cor!C_IUCted
nonlinear(bold curve$ simulations at Re20 andL, = 25.6. for a shear flow far away from the onset of instability, the
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same selection criterion has been shown to hold, althoughand asymmetric wakes,” J. Fluid Mec831, 231 (1997.

strongly nonlinear mechanisms have been activated. P. A. Monkewitz, P. Huerre, and J.-M. Chomaz, “Global linear stability
analysis of weakly non-parallel shear flows,” J. Fluid Me&bl, 1
1993.
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