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The time evolution of a viscous helical vortex is investigated by direct numerical
simulations of the Navier-Stokes equations where helical symmetry is enforced. Using
conservation laws in the framework of helical symmetry, we elaborate an initial condition
consisting in a finite core vortex, the time evolution of which leads to a generic
quasiequilibrium state independent of the initial core size. Numerical results at different
helical pitch values provide an accurate characterization in time for such helical states,
for which specific techniques have been introduced: helix radius, angular velocity, stream
function–velocity–vorticity relationships, and core properties (size, self-similarity, and el-
lipticity). Viscosity is shown to be at the origin of a small helical velocity component, which
we relate to the helical vorticity component. Finally, changes in time of the flow topology
are studied using the helical stream function and three-dimensional Lagrangian orbits.
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I. INTRODUCTION

Flows behind rotating bladed devices are often dominated by interlaced helical vortices developing
from blade tips. Such vortex systems are commonly found in the wake of marine propellers, wind
turbines, or helicopters. Important issues such as noise reduction, helicopter descent flight safety,
or wind farm optimization have generated a large amount of studies aiming at predicting vortex
emission, jet or wake spreading, instability growth, and turbulent mixing in this context. Experiments,
as well as some numerical works, investigate the production of the wake by the rotor blades, the spatial
three-dimensional evolution, and instability growth [1–10]. By contrast, most theoretical studies
adopt a local approach where the underlying vortex system is assumed to be purely helical: This
amounts to considering the flow in a cut plane orthogonal to the helix axis and assuming invariance
by translating and rotating the solution along that axis to yield the complete three-dimensional flow.
In this framework, equilibrium states have been investigated [11–15], as well as their instabilities
[16–22]. Among the studies devoted to equilibria, some concern thin-core helical vortices where
the main task is to remove the singular behavior of curved filaments to compute the self-induced
velocities and deduce, for instance, the angular velocity of the full vortex system or the topology
of streamlines [23]. Vortices with arbitrary core sizes have been numerically investigated by Lucas
and Dritschel [24]: Using the helically symmetric Euler equations for a given helical pitch, they
determined patch vortex solutions steady in some rotating frame, imposing geometrical constraints
on the centroid location and the vortex core size. The goal of the present paper is to extend the study
of helically symmetric vortices of arbitrary core size to the viscous context.
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FIG. 1. Local polar (blue) and helical (red) basis.

In a recent study [25], the internal structure of helical vortex configurations was determined
using asymptotic analysis. A viscous axisymmetric vortex core structure of the Batchelor-vortex
type was assumed at leading order; the dipolar (core shift) and quadrupolar corrections (elliptical
deformation) due to local curvature and nonlocal external strain were then quantified. Such theory
successfully described helical vortex states when compared to numerical results obtained using a
Navier-Stokes solver with built-in helical symmetry [26]. In the present work, we use this built-in
helical symmetry solver to compute the time evolution of a helical vortex with different helical
pitches. We thus introduce additional information, namely, the velocity-vorticity profiles selected by
viscous effects and their time evolution. Some of these aspects were already considered for systems
of two [27] or three [28] helical vortices. We herein focus on the case of one single helical vortex
in a quasiequilibrium state and investigate the relationships between the stream function, helical
velocity, and vorticity as well as the vortex core properties (size, self-similarity, and ellipticity) and
flow topology. The paper is structured as follows. In Sec. II, the concept of helical symmetric flow
is recalled together with the equations governing such flows. The numerical implementation and the
vortex characterization method are also briefly provided. In Sec. III, conservation laws for helical
vortices in the inviscid and viscous frameworks are given. The rest of the paper is more specific
to the study of a single helical vortex. Section IV focuses on initial conditions and describes the
relaxation towards a generic quasiequilibrium state. The characterization of the quasiequilibrium
itself is accounted for in Sec. V. The original methodology used for vortex characterization is
presented in detail in the Appendixes.

II. HELICALLY SYMMETRIC FLOWS

The flows presented here all display a helical symmetry of helical pitch 2πL (L is hereafter called
the reduced pitch): They are invariant through any combined translation of length � along the z axis
and rotation of angle �/L about the same axis. In standard cylindrical coordinates (r,θ,z), scalar
(vector) fields are helically symmetric if these scalar fields (the cylindrical components of these
vectors) depend on space only through r and ϕ ≡ θ − z/L. For instance, the helically symmetric
velocity field uuu(r,θ,z,t) can be expressed as follows:

uuu = ur (r,ϕ,t)eeer (θ ) + uθ (r,ϕ,t)eeeθ (θ ) + uz(r,ϕ,t)eeez. (1)

It is also convenient to introduce a local orthonormal Serret-Frénet basis related to helical lines, i.e.,
lines of constant ϕ (Fig. 1). This basis (eeeB,eeer ,eeeϕ) is defined by

eeeB(r,θ ) = α(r)

[
eeez + r

L
eeeθ (θ )

]
, eeeϕ(r,θ ) = α(r)

[
eeeθ (θ ) − r

L
eeez

]
, (2)
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with a normalization factor α(r) = (1 + r2/L2)−1/2 � 1. In this basis, the velocity field is
decomposed as

uuu = ur (r,ϕ,t)eeer (θ ) + uϕ(r,ϕ,t)eeeϕ(r,θ ) + uB(r,ϕ,t)eeeB(r,θ ). (3)

Such decomposition is also applied on the vorticity field ω.

A. Governing equations for helically symmetric flows

For helically symmetric flows, the incompressible Navier-Stokes equations can be rewritten in a
way that directly takes into account this symmetry. The divergenceless character of both velocity and
vorticity is automatically taken care of by introducing the helical component of velocity uB(r,ϕ,t),
of vorticity ωB(r,ϕ,t), and a stream function �(r,ϕ,t) such that [24]

uuu = uB(r,ϕ,t)eeeB + α(r)∇∇∇�(r,ϕ,t) × eeeB, (4)

ω = ωB(r,ϕ,t)eeeB + α(r)∇∇∇
(

uB(r,ϕ,t)

α(r)

)
× eeeB. (5)

Fields uB , ωB , and � are related via a generalization of the two-dimensional �-ω relationship in
the helical context:

L� = −ωB + 2α2

L
uB, (6)

where L stands for the modified Laplace operator

L(·) = 1

rα

∂

∂r

(
rα2 ∂(·)

∂r

)
+ 1

r2α

∂2(·)
∂ϕ2

. (7)

In addition, the motion is completely described by two coupled dynamical equations for uB and ωB :

∂tuB + NLu = V Tu,

∂tωB + NLω = V Tω, (8)

where ∂t stands for the time derivative. In the above equations, the nonlinear and viscous terms are
expressed as

NLu ≡ (ω × uuu) · eeeB, NLω ≡ [∇∇∇ × (ω × uuu)] · eeeB, V Tu ≡ ν

[
L

(
uB

α

)
− 2α2

L
ωB

]
, (9)

V Tω ≡ −ν[∇∇∇ × (∇∇∇ × ω)] · eeeB = ν

[
L

(
ωB

α

)
−

(
2α2

L

)2

ωB + 2α2

L
L

(
uB

α

)]
, (10)

where ν stands for the kinematic viscosity of the fluid. Contrary to what occurs in the two-dimensional
framework, the viscous terms V Tu and V Tω here couple the components uB and ωB . It is also
convenient to introduce the quantity uH defined by

uH ≡ uB

α
−

(
U∞

z + �

2πL

)
, (11)

where U∞
z denotes the axial velocity far from the z axis and � the total flow circulation. Indeed,

this latter quantity vanishes far from the vorticity region since uB/α = (uz + ruθ/L) behaves as
U∞

z + �/2πL when r → ∞. When uH is uniform in space, it is bound by definition to vanish
everywhere.

A numerical code has been written to implement the time advance of Eqs. (8) based on a �-ω
formulation generalized to the helical symmetry framework. This code is briefly outlined below,
but extensive details can be found in Ref. [26]. Quantities are represented in variables r and ϕ. The
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FIG. 2. Definition of planes �0 and �⊥, as well as of local bases and coordinates used for vortex
characterization. The dark spots represent the vortex core cut by either plane. Note that the sketch is done
for negative values of η and ψ .

code uses Fourier series along the ϕ direction where a 2π periodicity holds and second-order finite
differences in the radial direction. The time advance is performed on each azimuthal mode using a
second-order backward discretization of the temporal derivative. Viscous terms are treated implicitly.
Nonlinear terms appear explicitly through a second-order Adams-Bashforth extrapolation. They are
evaluated in the physical space, which involves the inverse Fourier transform of velocity and vorticity
components, a standard 2/3 dealiasing procedure, and a direct Fourier transform of nonlinear terms.
The numerical domain has a radial extension of approximately three helix radii: The outer boundary
is located at radial distance Rext = 3 made dimensionless with quantity R� as stated below in Sec.
IV A. The domain is meshed by Nr×Nθ = 500×384 grid points. The condition U∞

z = 0 is imposed:
This selects a specific reference frame that might differ from the laboratory frame in experiments.

B. Helical solutions in the �⊥ plane

In order to characterize a helically symmetric flow solution, one may cut the system by any (r,θ )
plane perpendicular to the z axis or by any meridional (r,z) plane. Indeed, quantities such as helical
velocity and vorticity components numerically obtained from the direct numerical simulation (DNS)
at discrete points (ri,ϕj ) may equally be viewed at points (ri,θj = ϕj ) in the plane z = 0 (hereafter
called �0) or at points (ri,zj = −Lϕj ) in the plane θ = 0 (hereafter called �z). Yet neither �0

nor �z is a convenient cut plane in the helical context because the characterization of vortex cores
there may be affected by a geometrical bias. For instance, a vortex possessing an axisymmetric
core structure yields a noncircular pattern if the plane intercepts the vortex axis in a nonorthogonal
fashion. In order to alleviate this problem, a more appropriate plane called �⊥ is introduced, which
cuts the vortex perpendicularly at some point A where the helical vorticity component reaches its
maximum, situated at distance rA(t) from the origin. At a given time t , plane �⊥ is then defined as
the plane containing point A and normal to the helical line passing through A, i.e., normal to the
vector eeeBA

≡ eeeB(rA,θA) (Fig. 2). Any point M in the �⊥ plane is defined by Cartesian coordinates
(ξ,η):

AM = ξeeerA
+ ηeeeϕA

, (12)

where eeerA
and eeeϕA

are the two other vectors of the Serret-Frénet basis (2) at point A. One can also
use polar coordinates (ρ,ψ) centered on A such that ξ = ρ cos ψ , η = ρ sin ψ , and the local polar
basis (eeeρ,eeeψ ) is given by eeeρ = cos ψeeerA

+ sin ψeeeϕA
and eeeψ = − sin ψeeerA

+ cos ψeeeϕA
.
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FIG. 3. Helical vortex of reduced pitches (a) L = 1 and (b) L = 0.25: isocontours of ωBA
in the plane �⊥.

Both vortices have comparable core sizes.

In order to characterize the vortex in the �⊥ plane, fields are determined in this plane using a
discrete polar grid: ρp is evenly spaced (p = 0, . . . ,Nρ − 1) between 0 and a few typical vortex core
sizes and ψq = 2πq/Nψ (q = 0, . . . ,Nψ − 1). To do so, the numerical data obtained on the (ri,ϕj )
grid are transferred to the (ρp,ψq) grid in the �⊥ plane. This involves geometrical transforms and
accurate interpolations, which are explained in detail in Appendix A. Figures 3(a) and 3(b) display
examples of vortex cores in the plane �⊥: The vortex core is generally not purely axisymmetric and
this dynamical feature due to vortex curvature becomes more significant at low L.

In the plane �⊥, the vorticity field is separated into a component orthogonal to the plane
�⊥, namely, ωBA

≡ ω · eeeBA
(except at point A, ωBA

is different from ωB), and two in-plane polar
components ωρ ≡ ω · eeeρ and ωψ ≡ ω · eeeψ . The core structure is studied by decomposing these
vorticity components in multipolar contributions, i.e., using a discrete Fourier transform in the
azimuthal direction ψ . For instance, the quantity ωBA

(ρp,ψq) is decomposed in azimuthal modes of
wave number m:

ω
(m)
BA

(ρp) = 1

Nψ

Nψ−1∑
q=0

ωBA
(ρp,ψq)e−imψq . (13)

Such decomposition has been successfully applied to characterize the instantaneous deformation
of helical vortices by comparison with the theoretical results of an asymptotic study [25]. Here it
is applied to characterize vorticity ω

(0)
BA

(r,t) as well as velocity uH
(0)(r,t) profiles, core radius, and

ellipticity (see the discussion in Appendix B2 and results in Sec. V).

III. CONSERVATION PROPERTIES FOR VISCOUS OR INVISCID HELICAL FLOWS

In this section, some invariant quantities and conservation properties are derived from the inviscid
or viscous dynamics of helical flows.

A. Global quantities for viscous flow: Some exact relations

Global quantities are obtained by integration in the �0 plane over a disk S having a radius Rext

large enough to encompass the region of nonzero vorticity. Quantities uH , ωB , and ωz are assumed to
tend to zero rapidly enough as r → ∞ so that the global quantities presented hereafter are convergent
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integrals, i.e., independent of the selected value of Rext. Here we introduce two exact global viscous
invariants and a global quantity that evolves linearly in time. The total circulation

� =
∫∫

S

ωzr dr dθ (14)

is known to be a global viscous invariant. Let us insert the equality for ωz valid in the helical
symmetry context

ωz = α

(
ωB − r

L
ωϕ

)
, (15)

with ωϕ = −α∂uH/∂r , into Eq. (14). After an integration by parts, one is led to

� = K1 − 2

L
K2, (16)

where K1 ≡ ∫∫
S
αωBr dr dθ and K2 ≡ ∫∫

S
α4uH r dr dθ . The axial momentum Pz per axial length

unit

Pz =
∫∫

S

rωθrdrdθ, (17)

with ωθ = α(ωϕ + rωB/L), is another global viscous invariant [29,30]. In the context of helical
symmetry, this invariant reads

Pz = 2K2 + 1

L
K3, (18)

where K3 ≡ ∫∫
S
r2αωBr dr dθ . Upon eliminating K2 from (16) and (18), an integral equation for

ωB only is found: ∫∫
S

ωB

α
r dr dθ = � + Pz

L
= const. (19)

A third global quantity is also of interest: the global angular momentum Lz per axial length unit

Lz ≡
∫∫

S

r2ωzr dr dθ. (20)

In the context of helical symmetry, Lz can be written in terms of integrals of ωB and uH as

Lz = 2LK2 + K3 − 2LK4, (21)

where K4 ≡ ∫∫
S
uH r dr dθ . It can be shown from the Navier-Stokes equations that this quantity is

not an invariant but evolves according to

Lz(t) = Lz(0) + 4�νt. (22)

Relations (18), (21), and (22) can be combined to yield the following time evolution for the
integral of uH : ∫∫

S

uH r dr dθ = 1

2

[
Pz − Lz(0)

L

]
︸ ︷︷ ︸

const

−2�

L
νt. (23)

For flows with zero total circulation (� = 0), the global angular momentum Lz is conserved [29],
in which case, due to property (23), the integral K4 of uH becomes time independent.
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B. Local conservation laws in the inviscid framework

Apart from global quantities, it is worth mentioning two exact local conservation laws for
helically symmetric flows. For inviscid flows [24], the quantity uH is materially conserved
[see Eqs. (8) and (9)]:

∂tuH + ur

∂uH

∂r
+ uϕ

αr

∂uH

∂ϕ
= 0. (24)

Using (4), the above equation may be rewritten as

∂tuH + J (uH ,�) = 0, (25)

where

J (f,g) ≡ 1

r

[
∂f

∂r

∂g

∂ϕ
− ∂f

∂ϕ

∂g

∂r

]
.

This implies that a helical flow with uH = 0 everywhere remains so in time if ν = 0. In such
flows, vorticity remains everywhere tangent to helical lines since vorticity components ωr and ωϕ

are uniformly zero [see Eqs. (5) and (11)].
In the inviscid framework, it was further shown [24] that the quantity αωB evolves according to

∂t (αωB) + J (αωB,�) + 2α4

L
J (uH ,�) + 2α4

L2
uH

∂uH

∂ϕ
= 0. (26)

Contrary to what happens for ωz in the two-dimensional case (obtained in the limit L = ∞), the
quantity αωB is not conserved on a general basis. However, when uH is uniformly zero, αωB is
materially conserved:

∂t (αωB) + J (αωB,�) = 0 when uH = 0. (27)

Similarly to the case of vortex rings, this equation possesses a geometrical interpretation in terms
of an infinitesimal helical vortex tube of radius r(t) and transversal section δA(t). When uH = 0,
volume conservation of one helix turn imposes that δA(t)

√
r2 + L2 is constant and circulation

invariance imposes that ωBδA(t) is constant as well. Both relations lead to the material conservation
of αωB if uH = 0.

C. Local conservation laws in the viscous framework

When viscosity is present, the equations for uH and αωB read, respectively,

∂tuH + J (uH ,�) = ν

α
L(uH ) − 2ν

L
αωB (28)

and

∂t (αωB) + J (αωB,�) + 2α4

L
J (uH ,�) + 2α4

L2
uH

∂uH

∂ϕ

= ν

[
1

α
L(αωB) + 4rα2

L2

∂

∂r
(αωB) + 2α3

L
L(uH )

]
. (29)

The last term on the right-hand side of Eq. (28) implies that, contrary to the inviscid case, uH

cannot remain zero if uH |t=0 = 0, in the presence of helical vorticity. It is possible, however, to
find an approximate time evolution in the viscous case. Indeed, when uH |t=0 = 0, Eq. (23) imposes
Pz = Lz/L and thus suggests that uH might depend linearly on νt . Following this idea, we neglect
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for the initial time period the uH terms in the dynamic equation (29) for αωB , leading to

∂t (αωB) + J (αωB,�) ≈ ν

[
1

α
L(αωB) + 4rα2

L2

∂

∂r
(αωB)

]
. (30)

If ωB is associated with a vortex of core size a 	 R�, it is possible to evaluate the order of
magnitude of the two terms on the right-hand side of (30). For L 	 R�, α is of order L/R� and

ν

α
L(αωB) ∼ νωB

L

R�a2
,

4νrα2

L2

∂

∂r
(αωB) ∼ νωB

L

R2
�a

. (31)

The second term is negligible with respect to the first one since a 	 R�. For L � R� or L = O(R�),
α is of order 1 and thus

ν

α
L(αωB) ∼ νωB

1

a2
,

4νrα2

L2

∂

∂r
(αωB) ∼ νωB

R�

L2a
. (32)

The second term can be neglected with respect to the first one if a 	 L2/R�. This always holds for
L � R� or L = O(R�) since again a 	 R�. When a 	 R�, the first term on the right-hand side of
(30) is thus dominant with respect to the second one and αωB satisfies

∂t (αωB) + J (αωB,�) ≈ ν

α
L(αωB). (33)

It can be easily checked that the exact equation (28) and approximate equation (33) together with the
initial condition uH |t=0 = 0 are simultaneously satisfied if the following relationship holds between
αωB(r,ϕ,t) and uH (r,ϕ,t):

uH = −2νt

L
αωB. (34)

The relation (34) is thus approximate and valid whenever uH remains small. Note that it is also
consistent with the exact integral relation (23). This idea can be extended to a solution in which the
initial condition reads

uH |t=0 = − δ2

2L
αωB |t=0, (35)

where δ is a length such that δ/L 	 1. In that case, the same approximation leads to the solution

uH (r,ϕ,t) = −δ2 + 4νt

2L
αωB(r,ϕ,t). (36)

This ansatz is indeed observed in the numerical results of Sec. V C.

IV. HELICAL VORTEX: REACHING QUASIEQUILIBRIUM

A. Initial conditions

For a two-dimensional vortex, a known solution of the Navier-Stokes equations is

ωz = �

πa2
exp[−ρ2/a2(t)],

with a(t) = (a2
0 + 4νt)1/2. This solution can be seen as the viscous spreading of a vortex generated by

a Dirac singularity at time t� = − 1
4a2

0/ν < 0. Introducing the shifted time t − t� makes the diffusion
law independent on the initial core size a0. Let us now extend this idea to obtain a single helical
vortex solution generated from a singular helical filament. This singular filament is characterized by
its circulation �, its reduced pitch L, and the helix radius R�. Contrary to the two-dimensional case,
no analytical viscous solution is available corresponding to the viscous spreading of a singular helical
vortex. Nevertheless, conservation properties derived in Sec. III are useful to elaborate the specific
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initial conditions that may lead to generic quasiequilibrium states. In particular, such solutions should
preserve circulation � and axial momentum Pz.

At short times, vorticity is concentrated around point A in a region of the plane �⊥, the extent
of which is much smaller than L and R�. It is thus reasonable to assume that the two-dimensional
diffusion law is satisfied in the �⊥ plane. This implies that (i) the initial vorticity profile in the �⊥
plane may be assumed to be Gaussian,

ωB |t=0 = C0 exp[−(ρ/a0)2], (37)

and (ii) this solution is the outcome of a helical singular vortex at time t� = − 1
4a2

0/ν. This also
implies that the velocity component uH is linked to ωB by the ansatz (35) with δ = a0, namely,

uH |t=0 = − a2
0

2L
αωB |t=0. (38)

At this stage, the normalization constant C0 in (37) is yet to be determined. This is also the case for the
helix radius rA(t = 0) since rA is unsteady and a priori different from R�. In order to determine both
quantities, one uses the following properties: (i) The prescribed circulation � and axial momentum
Pz are conserved during the time evolution and (ii) when t → t�, i.e., in the limit of the singular
filament, rA(t) → R� and Pz = R2

��/L. Using both remarks, C0 and rA(t = 0) can be computed:
Guess values are assumed and then C0 and rA(t = 0) are iteratively adjusted until circulation and
axial momentum evaluated through formulas (16) and (18) converge to their prescribed values �

and R2
��/L.

From now on, variables are made nondimensional using R� as a length scale and �/R� as a time
scale. Simulations a priori depend on three dimensionless parameters: the Reynolds number �/ν, the
dimensionless reduced pitch L, and the dimensionless core size a0. We will show in the subsequent
section that the dependence on a0 can indeed be removed by using the time shift τ ≡ t − t� as
postulated above.

B. Transient evolution

The present paper focuses on the time evolution of a single helical vortex starting from the specific
initial conditions (37) and (38). This initial profile, purely axisymmetric in the �⊥ plane, is a priori
not an Euler equilibrium. Such a situation is reminiscent of the evolution of an initial polygonal
array of identical, well-separated two-dimensional Gaussian vortices. In such flows, apart from the
solidlike rotation, each vortex evolves due to diffusion, but also due to the presence of an external
strain arising from mutual interactions. This occurs in two stages, as observed for corotative [31] and
counterrotating [32] vortices: a first rapid relaxation in which damped Kelvin waves are observed
to propagate on the vortices and a second phase in which a quasiequilibrium is reached that slowly
diffuses. In this latter stage, it is found that the time evolution of each vortex does not depend on a0

if expressed as a function of τ .
Similarly to what happens for such a vortex array, a helical vortex is subjected to rotation and

strain, though it is now self-induced. Based on this analogy, the present section shows that this
two-step process also prevails for a single helical vortex.

The rapid relaxation is presented for a helical vortex of pitch L = 0.25, of initial core size
a0 = 0.06, at Re = 5000. The evolution is similar at other pitch values and Reynolds numbers.
The time evolution of the helical vortex is displayed in Fig. 4, where the vorticity component ωBA

is presented in the �⊥ plane. Snapshots show how the initial axisymmetric vorticity distribution
becomes asymmetric within the core, while the very weak peripheral vorticity region displays a
complex evolution associated with the damping of inertial waves by viscosity. The vortex adapts its
structure to the self-induced strain field originating from local curvature as well as induction due to
remote vorticity.

The above process leads to a quasiequilibrium. The genericity of this state with respect to the initial
condition is illustrated in Figs. 5(a) and 5(b). Results are identical when computations for pitches
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FIG. 4. Helical vortex of pitch L = 0.25 at Re = 5000 for a0 = 0.06. Vorticity contours in the �⊥
plane during the relaxation process, for times t̄ ≡ t�/2πa2

0 = 0,10, . . . ,80. Contour levels are ωBA
/ω

(0)
BA

(0) =
0.5,10−1,10−2, . . . ,10−6.

L = 0.25 and L = 1 are started with two different initial core sizes a0 = 0.05,0.1 (corresponding
to the values τ = −t� = 3.12,12.5). In Fig. 5(a), the time evolution of rA is plotted as a function of
the shifted time τ . For a given L, all the curves end up collapsing after a short transient period (due
to Kelvin waves and characterized by the wiggles). Note that, even if the initial oscillations tend to
increase in amplitude and duration as the initial core size is increased or the pitch L is decreased, they
remain limited. Moreover, one may estimate the vortex core size at each time of the process. How
this quantity is computed is precisely explained in Appendix B. The core size in Fig. 5(b) follows
the same curve for two initial core sizes. The curve is very close to the two-dimensional diffusion
law for short times τ and then departs from it (for this latter point, see Sec. V A). In contrast, when
a0 is too large [Fig. 5(c)], there is a slight shift with respect to the curves emanating from the small
initial core sizes, which could be accounted for by correcting the evaluation of t�. This point is even
more underlined when L is small and self-interactions become stronger.

The point vortex diffusion hypothesis coupled to the ansatz (35) for uH thus leads to a generic
quasiequilibrium state: The long-time dynamics do not depend on the initial core size a0 when small.
In the following, we use the initial core size a0 = 0.1. The number of control parameters is thus
reduced to only two: the reduced pitch L and the Reynolds number Re.
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FIG. 5. Helical vortex of pitches L = 1 and L = 0.25 at Re = 5000. (a) Time evolution of the radial
position rA of the maximum of vorticity ωB as a function of τ , for three different initial conditions (IC), with
core sizes a0 = 0.05,0.1,0.15 corresponding to initial times τ = 3.125, 12.5, and 28.125. (b) Time evolution of
the squared core size a2(τ ) for the two core sizes a0 = 0.05 and 0.1 (the black dashed line is the two-dimensional
diffusion law 4τ/Re). (c) Same as (b), but for the largest initial core size a0 = 0.15.

V. QUASIEQUILIBRIUM OF A HELICAL VORTEX

The lack of explicit solutions of the helical Navier-Stokes equations justifies that helical vortex
quasiequilibria computed by DNS need to be accurately described. As the geometry of such flows
is rather involved, specific characterization techniques are employed to determine helix radius
and angular velocity. In addition to core radius, ellipticity can also be computed since the vortex
core is not purely axisymmetric [see Figs. 3(b) and 3(d)]. All these quantities are defined in the
Appendix B as well as the numerical procedures used to compute them. In the present section,
generic quasiequilibrium states obtained for various pitches between L = 0.25 and L = 3 at fixed
Reynolds number Re = 5000 are characterized.

A. Core radius and self-similarity

The core size a of a helical vortex is computed using the technique based on the fit of the
axisymmetric part of the helical vorticity in plane �⊥ (for details see Appendix B2). When L > 1,
the two-dimensional diffusion law is a fair approximation for the core size evolution, as can be
seen in Fig. 6. When L < 1, the core size increases less than its two-dimensional counterpart. The
strong increase of a observed for L = 0.25, around τ = 130, corresponds to situations where coils
significantly overlap (a � 0.32 > L), making the notion of individual core size inadequate.

Figure 7(a) displays the spreading of ω
(0)
BA

(i.e., the axisymmetric part of vorticity component
ω · eeeBA

) in time. When rescaled as

ω̃
(0)
BA

= ω
(0)
BA

(ρ̄,τ )

ω
(0)
BA

(0,τ )
, ρ̄ = ρ

a(τ )
, (39)

these profiles collapse onto a Gaussian curve ω̃
(0)
BA

(ρ̄) = exp(−ρ̄2) [Fig. 7(b)]. This self-similarity
has been predicted for viscous curved thin core vortices by Callegari and Ting [33] and observed on
numerically computed rotor wakes by Ali and Abid [7].

Furthermore, the profiles of u
(0)
H (i.e., the axisymmetric part of quantity uH ) spread in time with

the same self-similar radial variable ρ̄ (Fig. 8). Contrary to ω
(0)
BA

, the amplitude of the velocity deficit

u
(0)
H (ρ = 0,τ ) remains approximately constant in time [see the value −0.14 for L = 0.5 in Fig. 8(a)].

This can be accounted for by using Eq. (34) coupled to the self-similarity (39) with a2(τ ) ≈ 4τ/Re.
The value u

(0)
H (ρ = 0) can be obtained with the following analytical argument: In the limit a → 0,

the radius rA tends to 1, ω
(0)
B tends to exp[−(ρ/a)2]/(πa2), and, according to Eq. (34), u

(0)
H tends to
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FIG. 6. Helical vortex for different values of L between 0.25 and 3. Time evolution of the squared core size
a2 at Re = 5000. The black dashed line shows the two-dimensional diffusion law 4τ/Re.

−α exp[−(ρ/a)2]/2πL. This implies that

u
(0)
H (ρ = 0) → − 1

2π
√

1 + L2
. (40)

In the present case, L = 0.5 yields uH (0) ≈ −0.142.
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FIG. 7. Helical vortex of pitch L = 0.5 at Re = 5000. (a) Axisymmetric part of the helical vorticity ω
(0)
BA

(ρ)
at times τ = 22.5,32.5, . . . ,172.5 (amplitude decreases with time). (b) Same profiles normalized in amplitude
by the maximum value at each time, as a function of the similarity variable ρ̄ = ρ/a. The black dashed line
shows ω̃

(0)
BA

(ρ̄) = e−ρ̄2
.
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ũ

(0)
H = −e−ρ̄2

.

B. Helix radius rA and angular velocity �

The temporal evolution of the helix radius rA is plotted in Fig. 9 for different values of L at
Re = 5000. For all values of L considered, the helix radius first increases, reaches a maximum, and
then decreases. During the period of increase, the rate drA/dt is found to increase as L is decreased
and seems to reach an asymptotic value for small L. This value is found to be 7.1×10−4, smaller
than the theoretical value prevailing for a vortex ring 4.590 273 9/Re ≈ 9.2×10−4 at asymptotically
large Re [34]. In vortex rings, this radial drift was related to the conservation of axial momentum
[34]. For helical vortices, a similar argument based on the conservation of integral (17) together with
the equation (22) for Lz(t) may hold, but its derivation probably necessitates studying the precise
dipolar and quadrupolar structure of the fields, which is far beyond the scope of the paper.

For small L, the maximum is reached at a critical time where the vortex successive coils are about
to overlap, as depicted in Figs. 10(a) and 10(b). For larger L, the same argument does not apply
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FIG. 9. Helical vortex for different values of L between 0.25 and 3, at Re = 5000. (a) Helix radius rA as a
function of τ . (b) Same as (a) over a longer time period. (c) Angular velocity � as a function of τ ; the dashed
lines are the values �c predicted by the cutoff theory.
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FIG. 10. Helical vortex at Re = 5000 of reduced pitch (a) and (b) L = 0.25 at τ = 92.5 and and (c) and
(d) L = 1 at τ = 1750. (a) and (c) Isocontours in the �0 plane (black lines) of the corotating stream function
�R ≡ � + 1

2 r2� (� is the angular velocity of the vortex) superimposed on top of the quantity αωB . (b) and
(d) Representation in the meridional plane �z.

[see Figs. 10(c) and 10(d)]: In this case, rA should tend to zero for large times since the asymptotic
state is a columnar vortex centered on the z axis. As a consequence, a maximum of rA is also expected.

The slow time evolution of angular velocity � is plotted in Fig. 9(c) and is compared to the value
obtained with the cutoff theory [29]. This theory predicts a frequency �c given by

�c(a,L) = − �

2πL2

[(
1 + r2

A

/
L2)I (rA/L,δ/L) − K(rA/L,δ/L)

]
, (41)

with

K = L2

r2
A

{
1 − θ0[

2r2
A[1 − cos θ0]

/
L2 + θ2

0

]1/2

}
, (42)

I =
∫ ∞

θ0

[1 − cos θ ]{
θ2 + 2r2

A[1 − cos(θ )]
/
L2

}3/2 dθ. (43)

Here the terms I and K result from the self-induced velocity due to the distant part of the vortex
filament and θ0 is a cutoff angle defined using the core size a, the reduced pitch L, and a cutoff
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FIG. 11. Helical vortex of pitch L = 0.5 at Re = 5000 for times (a) and (b) τ = 62.5 and (c) and (d):
τ = 162.5. (a) and (c) Quantity αωB (in color) with isocontours (black lines) of �R , the corotating stream
function. (b) and (d) Helical velocity uH (in color) with isocontours (white lines) of �R . Representation in the
�0 plane.

parameter for Gaussian vorticity distribution without axial flow δ = 0.8735:

θ0 = aδ

|L|
√

1 + r2
A

/
L2

. (44)

In (41)–(44), the value of rA is given by the DNS and a is approximated by a two-dimensional
diffusion law. Figure 9(c) shows good agreement for all values of L except after the critical instant
where rA reaches a maximum. This is expected since these dynamics cannot be captured by the
filament model any longer and the two-dimensional diffusion law breaks down.

C. Univoque relationship between uH or αωB and �R

Snapshots of uH [see Figs. 11(b) and 11(d)] show that isovalues of this quantity are closely
related to isocontours of the stream function in the rotating frame of reference �R ≡ � + 1

2 r2�.
This indicates that the flow is close to an Euler equilibrium. Indeed, assume that a single helical
vortex possesses an inviscid equilibrium solution rotating at angular velocity �: Such a solution is
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FIG. 12. Helical vortex of reduced pitch L = 0.5 at Re = 5000. Scatter plots of (a) (αωB,�R) and (b)
(uH ,αωB ) at τ = 62.5 (blue), 112.5 (black), and 162.5 (red).

of the form uH (r,ϕ,t) = uH (r,ϕ − �t), so

∂tuH = −�
∂uH

∂ϕ
. (45)

The exact inviscid relation (25) then reduces to J (uH ,�R) = 0, which implies that uH is a univoque
function of �R:

uH = F (�R). (46)

Snapshots of αωB [see Figs. 10, 11(a), and 11(c)] show that isovalues of αωB are also related to
streamlines of �R . Again, this implies that the flow is close to an Euler equilibrium. For the specific
case uH = 0, inviscid rotating equilibria satisfy J (αωB,�R) = 0, as implied by Eq. (27), and this
imposes αωB to be a univoque function of �R as well:

αωB = G(�R) when uH = 0. (47)

This exact relation for uH = 0 becomes approximate for nonuniform uH distributions. Indeed,
inviscid equilibria should satisfy in that case Eq. (26) together with Eq. (46), yielding

J (αωB,�R) + 2α4

L2
u

(R)
H

∂uH

∂ϕ
= 0, (48)

where u
(R)
H = uH − L� is the value of uH in the rotating frame. If the second term in Eq. (48) is

discarded, e.g., when uH is small, one recovers Eq. (47).
Both conclusions are further confirmed by the scatter plots in Figs. 12(a) and 12(b): The points

(αωB,�R) and (uH ,αωB) are aligned on a single curve for any fixed time. For an Euler flow, the
functional relationship would be steady. Here this state is called quasiequilibrium since it evolves in
time because of viscous diffusion, leading to a slow time dependence of the functional relationship as
well. Figure 12(b) confirms a linear dependence between uH and αωB as predicted by Eq. (34). Such
relationships were also verified for the case of two helical vortices during their quasiequilibrium
stage of evolution [27].
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FIG. 13. Helical vortex at Re = 5000 for different values of L between 0.25 and 3. (a) Time evolution of
ellipticity μ0. Solid lines show values determined from the DNS and circles the ellipticity predicted by Eq. (51).
(b) Time evolution of ε measured through the DNS.

D. Strain and ellipticity

Quasiequilibrium solutions are not purely axisymmetric [see Figs. 3(b) and 3(d)]. In Appendix B 3,
it is explained how streamline ellipticity μ(ρ) can be numerically computed. This quantity slightly
varies with ρ within the core (see Fig. 19 in Appendix B). In this section, we use the ellipticity
in the vicinity of the vortex-core center μ0 ≡ μ(ρ = 0) as a measure of the core ellipticity and
focus hereafter on its time evolution. Plotted in Fig. 13(a) is the time evolution of the measured
ellipticity μ0 for various values of L. As L is decreased, it is found that the ellipticity increases. For
a single helical vortex, an asymptotic analysis was performed in Ref. [25] providing an expression
for the stream function near the vortex center (written below with the nondimensional units used in
Ref. [25])

�(ρ,ψ) = −ρ2

2
+ ε2S(2)ρ2 cos 2ψ + · · · for ρ → 0, (49)

where the parameter ε is defined as

ε ≡ a

rA

1

1 + L2/r2
A

(50)

and S(2) is a dimensionless quantity. From expression (49) it is easy to compute the ellipticity of
streamlines near the vortex center using the relation (B10) of Appendix B3, which yields

μ0 ≈ −ε2S(2). (51)

The dimensionless quantity S(2) is the sum of two contributions

S(2) = SNH + 2.525S. (52)

The first term SNH is due to local curvature effects and is computed in Ref. [25]. In the present work
we use in our computation the value with zero axial velocity SNH = −0.2. The second term is related
to a strain rate 2S, which is not externally imposed here but self-induced, due the other parts of the
vortex. In Ref. [25], the value of S(ε,L/rA) for a single helical vortex is explicit in their Eq. (4.16) as
a function of ε and L/rA. Since the parameter ε is assumed to be small in this asymptotic analysis,
the vortex core size has to remain small with respect the radius rA and the reduced pitch L. This
condition is met here especially at large L, as shown in Fig. 13(b), where the time evolution of ε is
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plotted. Note that the case of a two-dimensional vortex with a Gaussian vorticity profile subjected to
an external strain field γ is recovered from (51) and (52) by setting SNH = 0 and ε2S = γ /2 [35].

Equations (51) and (52) lead to an analytical model for μ0, which is plotted in Fig. 13(a) for
various values of L. For large L, the self-induced strain field is almost null and so is the ellipticity.
For small L, the agreement is fair, but not close. Taking into account the angular rotation of single
helical vortex may reduce the discrepancy between model and DNS results. Indeed, it is known
that rotation affects ellipticity for two-dimensional vortices in an external rotating strain [36]. The
asymptotic analysis performed [25] for helical vortices, however, does not introduce the role of
rotation in the two terms of Eq. (52). Introducing the role of rotation in the curvature and strain
terms would necessitate an asymptotic work by itself, which we leave for a future study.

E. Flow topology in the rotating frame

As time evolves, the vortex core size increases, which may induce a modification of the flow
topology in the corotating frame. In this respect, one may focus on the orbits, i.e., lines of constant

FIG. 14. (a)–(e) Streamline topology in the rotating frame for a helical vortex with different core sizes a

at fixed L = 0.5. For each value of a, streamlines are represented in planes �0 (left) and �z (right). Critical
points are pinpointed as solid circles. (f) Sketch of the three flow regions defined by the homoclinic orbits.
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FIG. 15. Rotating frame: streamline topology for one helical vortex of core size a = 0.3 and for different
L. Representation in planes �0 (left) and �z (right). Critical points are pinpointed as closed circles.

�R projected onto the planes �0 and �z at each time, and, more specifically, on the number and
position of critical points. This extends the work of Ref. [23] to nonsingular vorticity distributions
and quasisteady viscous equilibria.

In Fig. 14, the isovalues of �R at fixed pitch L = 0.5 are plotted in �0 (left graphs) for increasing
times, thus for increasing core sizes. Without loss of generality, the vortex has been rotated so that its
center (red dot) lies at θ = 0. For small a [Fig. 14(a)], there is only one critical point, corresponding
to the vortex center. When a is close to L [Fig. 14(b)], an elliptic point (blue dot) and a saddle
point (green dot) now appear, both situated at θ = π , opposite to the vortex center. These points
impose a structure on the flow. Based on the homoclinic orbits of the saddle in �0, three regions
can be defined, as sketched in Fig. 14(f): (i) a region 1 enclosed by the inner homoclinic orbit
containing the additional elliptic point, (ii) a region 2 located outside the outer homoclinic orbit, and
(iii) a region 3 that contains the vortex center and complements the two other regions. These three
regions have their counterpart in the plane �z (right graphs in Fig. 14): The vortex centerline cuts
�z at z = (0,±2,±4, . . .)πL, while elliptic and saddle points are located at z = (±1,±3, . . .)πL.
Additional points (yellow dots in Fig. 14) emerge at r = 0 and z = (± 1

2 ,± 3
2 , . . .)πL. They are

associated with the streamline in the �0 plane passing through the origin. A helical streamtube
(region 1) thus appears at a certain distance of the axis. As a is increased, the elliptic and saddle
points progressively move apart radially, which increases the area of region 1. The topology is
modified when a crosses the value 0.54 [see Figs. 14(c) and 14(d)]: Region 1 in the plane �0 now
contains the origin and, more importantly, in the �z plane, region 3 gets away from the z axis, which
is now fully contained in region 1. When a/L is large enough, region 3 tends to form a cylindrical
shear layer, which consequently induces a jet or wake near the axis, which is in region 1.

When L is decreased keeping the core radius a fixed, the streamline topology evolves in a similar
manner as the one described when a is increased at fixed L. This is shown in Fig. 15, where
isocontours of �R are plotted for a = 0.3 and different pitches L = 0.5,0.4,0.3.
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TABLE I. Case definition for the study of
Lagrangian orbits.

Case L a

a 0.5 0.06
b 0.5 0.25
c 0.25 0.25

In order to better characterize the flow topology at each time, one may also provide three-
dimensional Lagrangian orbits in the frozen flow corresponding to the quasisteady state at that time.
This is performed by time integrating the true three-dimensional dynamics of Lagrangian particles
in the reference frame rotating with the vortex. Note that these orbits are bound to stick to helical
surfaces of constant �R , but they are not themselves helically symmetric.

Hereafter, we examine such orbits for the three cases listed in Table I. For cases a and b, the
flow topology is similar to that of Fig. 15(a), while for case c, additional critical points are present
as in Fig. 15(c). For each case, three different trajectories have been considered (see Fig. 16): in
the vicinity of the vortex core (left), in the vicinity of the z axis (center), and in the outer potential

FIG. 16. Lagrangian orbits (solid black lines) in the corotating frame, around a helical vortex (green tube)
for cases (a) L = 0.5 and a = 0.06, (b) L = 0.5 and a = 0.25, and (c) L = 0.25 and a = 0.25. The orbit is
initiated in the vicinity of the vortex core (left), in the vicinity of the z axis (center), and in the potential outer
region (right).
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region (right). Orbits initiated near the vortex core loop around the vortex with a spatial periodicity
that depends on the core size, the pitch, and their distance to the vortex core center. When initiated
in the outer potential region, the orbits are modulated helical trajectories with small pitch, which are
weakly influenced by the geometrical parameters of the vortex. When initiated near the z axis, two
scenarios occur. For cases a and b [see Figs. 16(a) and 16(b) center graph], there is no critical point
and orbits alternatively loop around the vortex core and progress along a path in the vicinity of the z

axis. For case c [see Fig. 16(c) center graph], orbits are quenched between the critical points, hence
in the vicinity of the z axis. The emergence of such orbits in the inner region is to be linked to the
fact that, at smaller L values, the vorticity distribution more and more resembles a cylindrical vortex
sheet, which is known to induce an axial velocity component inside the cylinder.

VI. CONCLUSION

Quasiequilibria of helical vortex systems have been numerically investigated in the helical
symmetry context. In particular, a generic quasiequilibrium state of one helical vortex has
been obtained stemming from a singular helical line vortex. Accurate tools were developed
for characterization showing several features. First, the helical vorticity component in the plane
locally orthogonal to the vortex centerline was found to be self-similar and to have a Gaussian
distribution with radius a(τ ) ≈ (4τ/Re)1/2 and decaying amplitude 1/πa2(τ ). Second, the helical
velocity component is coupled to the helical vorticity through viscous effects leading to a
relationship uH = 2ταωB/L Re. Consequently, a small Gaussian velocity deficit occurs along
helical lines and radially spreads at the same rate as vorticity but with a roughly constant amplitude
−L[2π (1 + L2)]−1. The helical vortex locally endows the profile of a Batchelor vortex. In addition,
the ratio q(τ ) ≈ −(1 + L2)/La(τ ) between the typical azimuthal velocity 1/2πa and the constant
helical velocity amplitude takes large negative values since the vortex core is assumed to be small.
The helix radius also increases in time, but no simple argument was found to explain this precise
behavior. Finally, we analyzed the flow topology in the corotating frame. To do so, we presented the
structure of the helical stream function, or more precisely the emergence of critical points, as well
as three-dimensional Lagrangian orbits. The above results could be potentially extended to arrays
of multiple helical vortices, as partially done in [27].

For the specific value L = 1 and presumably for pitches in the vicinity of this value, a
quasiequilibrium could not be reached [see Fig. 9(b)]: Such a state seems to be unstable with
respect to perturbations with helical symmetry. A similar behavior was previously reported for a
helical patch [24]. Whether both observations are linked or not is left for future investigations.
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APPENDIX A: RETRIEVING QUANTITIES IN PLANE �⊥ FROM �0

This Appendix explains how quantities needed in plane �⊥ for vortex characterization are
retrieved from numerical data provided in plane �0. Since scalars and vortex components are
invariant along lines of constant ϕ, this amounts to locating, for any point M of Cartesian coordinates
(ξ,η) in plane �⊥, the point M0 in the plane �0 situated on the same helical line as M , as depicted
in Fig. 2. In the cylindrical frame, the coordinates of M and M0 are denoted by (rM,θM,zM ) and
(rM0 ,θM0 ,0), respectively. The position vector OMOMOM is first expressed in two different ways, namely,
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from the equation of the helical line

OMOMOM = zMeeez + rM cos θMeeex + rM sin θMeeey, (A1)

where

θM = θM0 + zM/L, rM = rM0 , (A2)

or by inserting the vortex center A,

OMOMOM = OAOAOA + ξeeerA
+ ηeeeϕA

= (rA + ξ )eeerA
+ ηeeeϕA

. (A3)

The height zM can readily be determined

zM = OMOMOM · eeez = −αA

rA

L
η, (A4)

with

αA ≡
(

1 + r2
A

L2

)−1/2

,

so that

rMeeer = OMOMOM − zMeeez = (rA + ξ )eeerA
+ ηα2

AeeeϕA
+ ηα2

A

rA

L
eeeBA

, (A5)

and after some straightforward algebra

rM = [
(rA + ξ )2 + α2

Aη2
]1/2

, (A6)

rM cos θM = (rA + ξ ) cos θA − ηαA sin θA, (A7)

rM sin θM = (rA + ξ ) sin θA + ηαA cos θA. (A8)

For vortex characterization, a regular polar mesh with nodes (ρp and ψq) is created in plane �⊥.
Relations (A6)–(A8) with ξ = ρp cos ψq and η = ρp sin ψq lead to the determination of rM and
θM , which, together with (A2), give access to the coordinates of the image points M0 in �0. Since
these latter points do not coincide with the nodes at which the numerical data are provided, it is
found necessary to use a fifth-order accurate interpolation based on Tchebychev polynomials. This is
performed for all vorticity and velocity components. The in-plane vorticity components ωρ = ωωω · eeeρ

and ωψ = ωωω · eeeψ as well as the component ωBA
= ωωω · eeeBA

normal to �⊥ are then determined, with
(eeeρ,eeeψ ) being the local polar basis in �⊥. Using the components of eeeBA

, eeeρ , and eeeψ on the basis
(eeeB,eeeϕ,eeer ) eventually leads to the expressions

ωBA
= ωBαMαA

[
1 + rMrA

L2
cos(θM − θA)

]
+ ωϕαMαA

[
rA

L
cos(θM − θA) − rM

L

]

+ ωrαA

rA

L
sin(θM − θA), (A9)

ωρ = ωB

[
αMrM

L
sin(θA − θM ) cos ψ + αMαA sin ψ

(
− rA

L
+ rM

L
cos(θM − θA)

)]
+ ωr [cos(θM − θA) cos ψ + αA sin(θM − θA) sin ψ]

+ ωϕ

[
αM sin(θA − θM ) cos ψ + αMαA

rMrA

L2
+ cos(θM − θA) sin ψ

]
, (A10)

ωψ = ωB

[
−αMrM

L
sin(θA − θM ) sin ψ + αMαA cos ψ

(
− rA

L
+ rM

L
cos(θM − θA)

)]
+ ωr [− cos(θM − θA) sin ψ + αA sin(θM − θA) cos ψ]

+ ωϕ

[
−αM sin(θA − θM ) sin ψ + αMαA

rMrA

L2
+ cos(θM − θA) cos ψ

]
. (A11)
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APPENDIX B: VORTEX CHARACTERIZATION

This Appendix explains the specific characterization techniques used to determine helix radius,
angular velocity, core radius, and ellipticity.

1. Helix radius rA and angular velocity �

In the plane �0, the precise value of the helix radius rA is obtained using a local quadratic
interpolation of ωB around the grid point where ωB(ri,θj ) is maximum. The interpolating paraboloid
is then used to accurately determine the maximum location (rA,θA) of ωB(r,θ ).

Configurations of one helical vortex or a regular array of identical vortices may be inviscid
equilibria when considered in a frame rotating at some constant angular velocity �. This rotation
is due to both the self-induced vortex velocity and the mutual induction between vortices. When
viscous diffusion acts, it gives rise to a slowly evolving state that we call quasiequilibrium with
changing angular velocity, helix radius, and core size. One method for evaluating the instantaneous
angular velocity �(t) is to track the azimuthal location of the vortex center θ−

A and θ+
A for times t− and

t+, respectively, and to set �(t) = (θ+
A − θ−

A )/(t+ − t−) at time t = 1
2 (t− + t+). Such a procedure

is inaccurate because determining θ±
A may be quite sensitive to the actual position of the vortex

center within the numerical cell. Instead we use the vorticity component ωB in the whole plane
�0 at times t− and t+. The rotation angle δθ of the vortex along the azimuth between times t−
and t+ is determined so as to achieve the best correlation between ωB(r,θ + δθ,t−) and ωB(r,θ,t+).
Technically, the positive integral

I (δθ ) ≡
∫∫

S

|ωB(r,θ,t+) − ωB(r,θ + δθ,t−)|2dS (B1)

is minimized with respect to δθ using an iterative procedure [note that the quantity ωB(r,θ + δθ,t−)
is accurately obtained from ωB(r,θ,t−) by simple multiplications of azimuthal modes ω

(m)
B by eimδθ ].

This approach is justified since for inviscid equilibria, I (δθ ) vanishes for δθ = (t+ − t−)�. For
viscous quasiequilibria, I (δθ ) is assumed to reach a minimum when δθ = (t+ − t−)�(t), which
yields �(t) for t = 1

2 (t− + t+).

2. Vortex core radius

In order to evaluate the core size, we focus on the axisymmetric part of expansion (13) in the
plane �⊥. A Gaussian fit is assumed for the monopolar component ω

(0)
BA

,

f (ρ; C,a) = Ce−(ρ/a)2
, (B2)

and parameters C and a are evaluated so that the distribution (B2) achieves the best fit on the interval
[0,ρcut] in which vorticity is significant (see below for a discussion of the appropriate values of ρcut).
Quantity a quantifies the vortex core radius.

The Gaussian profile is an excellent fit for a helical vortex of pitch L = 1, as can be seen in
Fig. 17(a). For lower pitches [see Fig. 17(b) at L = 0.25], the fit deteriorates at the periphery of
the vortex. For smaller values of L (typically when L < 0.5), the plane �⊥ cuts several adjacent
turns of the vortex [see Fig. 3(b)]. As a consequence, the vorticity of adjacent turns may overlap.
This means that ρcut should thus be chosen such that contributions due to adjacent turns are not
taken into account, that is, ρcut cannot exceed half the spacing between turns πLd, where the factor
d = R/

√
R2 + L2 arises from the angle between planes �⊥ and �z. In addition, ρcut cannot be

smaller than 2a, so most of the vorticity distribution is fitted. This imposes a major constraint,
especially when the core size a is large: 2a � ρcut � πLd. For the case L = 0.25 in Fig. 17(b), one
has 2a ≈ 0.6, ρcut = 0.6, and πLd = 0.75. For large L, the plane �⊥ intercepts the helical vortex
only once [Fig. 17(a)], thus the evaluation of the core radius is not sensitive to ρcut if large enough.
Typically, ρcut is chosen larger than 4a when L � 0.5.
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FIG. 17. Helical vortex of reduced pitches (a) L = 1 and (b) L = 0.25: monopolar vorticity component
ω

(0)
BA

(ρ) (solid line) and its Gaussian fit (dashed line).

Note that the definition of the core size is not unique: For two-dimensional vortices, moments
of vorticity are commonly used. In analogy with the two-dimensional case, one could alternatively
employ the vorticity moments of ωBA

(ρ,ψ) about the center point A in the �⊥ plane:

a2
d =

∫∫
ρ2ωBA

(ρ,ψ)ρdρdψ∫∫
ωBA

(ρ,ψ)ρdρdψ
=

∫ ρcut

0 ρ3ω
(0)
BA

(ρ)dρ∫ ρcut

0 ρω
(0)
BA

(ρ)dρ
. (B3)

This definition, however, is very sensitive to the presence of vorticity far from the center because of
the ρ3 factor in the integral. It is shown that, especially at low L, the results for ad strongly depend
on the cutoff radius ρcut, as depicted in Fig. 18. This makes the core size definition based on vorticity
moments inadequate for helical vortices with small pitch.

3. Vortex core ellipticity

In Figs. 3(b) and 3(d), it can be seen that as one moves away from the vortex center A, i.e., as
ρ is increased, vorticity contours are shifting their center towards the left along eeerA

and are also
changing their ellipticity with a major axis directed along eeeϕA

and a minor axis directed along eeerA
.

This is coherent with the asymptotic analysis performed in [25] in which the stream function �R in
the corotating frame is assumed to be expanded in terms of ε defined in Eq. (50). At leading order ε0,
the structure is monopolar, i.e., a local columnar axisymmetrical vortex. The main dipolar correction
that induces the center shift towards the center of curvature of the filament, i.e., along eeerA

, arises at
first order in ε. Quadrupolar corrections quantify the ellipticity of the streamlines, i.e., the elliptical
deformation of the vortex under the effect of strain. They are generated as well as other dipolar and
monopolar corrections, at second order in ε2. Focusing on quadrupolar and dipolar corrections at
lower orders, the expansion in [25] implies that

�R(ρ,ψ) = �
(0)
R (ρ) + ε�

(1)
R (ρ) cos ψ + ε2�

(2)
R (ρ) cos 2ψ + · · · . (B4)

We extend the methodology used in [35] to evaluate the shape of streamlines in the corotating
reference frame. From the above expansion, one may assume that the streamline of level �R is
located at

ρ = ρ(0) + ερ(1) cos ψ + ε2ρ(2) cos 2ψ + · · · , (B5)
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FIG. 18. Helical vortex of reduced pitches L = 1 (solid line) and L = 0.25 (dashed line). Fitted core size
a (top curves in red) and dispersion radius ad (blue) as functions of ρcut/πLd . The fitted core size a is found
to be much less sensitive to ρcut than the dispersion radius.

where the real quantities ρ(0), ρ(1), and ρ(2) depend only on �R . If higher multipolar contributions
are discarded in (B5), this corresponds to an ellipse with a center shift of ερ(1) along the eeerA

axis with
a semiaxis directed along eeerA

of length A(ρ(0)) = ρ(0) + ε2ρ(2) and the second semiaxis directed
along eeeϕA

of length B(ρ(0)) = ρ(0) − ε2ρ(2). Ellipticity is hence

μ(ρ(0)) = |A − B|
A + B

= ε2 |ρ(2)|
ρ(0)

. (B6)

Introducing expansion (B5) in expansion (B4) at order ε, one gets

�R(ρ,ψ) = �
(0)
R (ρ(0)) + ε

[
�R

(1) + ρ(1) d�
(0)
R

dρ
(ρ(0))

]
cos ψ + · · · , (B7)

leading to a shift

ερ(1) = −ε�R
(1)(ρ(0))

d�
(0)
R

dρ
(ρ(0))

(B8)

evaluated at ρ(0). At order ε2, setting to zero the term in cos 2ψ , one gets the relation

ρ(2) = − �
(2)
R

d�
(0)
R

dρ

+ 1

2

�
(1)
R[ d�
(0)
R

dρ

]2

(
d�

(1)
R

dρ
− �

(1)
R

2

d2�
(0)
R

dρ2

)
(B9)

evaluated at ρ(0).
As an example, let us consider a helical vortex at pitches L = 1 and L = 0.25. Figure 19(a)

displays the shift of the center of elliptical streamlines as a function of ρ(0)/a. From the negative
sign of ρ(1) it is confirmed that the center shifts towards the center of curvature as ρ(0) increases. In
Fig. 19(b), the ellipticity μ is plotted as a function of ρ(0)/a. It is found that μ slightly varies with ρ(0)

and is found to increase with radial distance, as expected since vorticity levels gradually decrease.
In the paper, the quantity μ0 ≡ μ(0) is used as a measure of the core ellipticity. It is obtained
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streamlines as a function of ρ(0)/a. (b) Ellipticity μ as a function of ρ(0)/a.

from (B6) and (B9) using l’Hôpital’s rule twice, yielding

μ0 = ε2

2

∣∣∣∣d2�
(2)
R

dρ2

∣∣∣∣
/∣∣∣∣d2�

(0)
R

dρ2

∣∣∣∣ (B10)

evaluated at ρ = 0. From the negative sign of ρ(2), it can be seen that the major axis of elliptical
streamlines is aligned with the vector eeeϕA

, hence orthogonal to the r direction.
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