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Abstract

A numerical approach is proposed for the study of instabilities in helical vortex systems
as found in the near-wake of turbines or propellers. The methodology has a high degree of
generality, yet the present paper focusses on the case of one unique helical vortex. First, a
method based on helical symmetry aimed at computing a three-dimensional base flow with
prescribed parameters – helical pitch, helical radius, vortex circulation, core size and inner
jet component — is presented. Second, the linear instability of this base flow is examined
by reducing the three-dimensional instability problem to two-dimensional simulations with
wavenumbers prescribed along the helix axis. Each simulation converges towards an expo-
nentially growing or decaying complex state from which eigenfunctions, growth rate and
frequency are extracted. This procedure is validated against a standard method based on
direct three-dimensional numerical simulations of the Navier–Stokes equations linearized in
the vicinity of the same helical base flows. Three illustrative base flows are presented with
or without inner jet component, the instability of which is dominated, at the prescribed
axial wavenumber, by unstable modes of three different types: long-wave instability, short-
wave elliptic and curvature instabilities. Results from the new procedure and from the fully
three-dimensional one are found in excellent agreement, which validates the new methodol-
ogy. The gain in computational time is typically the one that is achieved while going from
three-dimensional to two-dimensional simulations.

Keywords: vortex dynamics, helical vortex, instability, elliptic instability, curvature instability,
numerical simulation
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1 Introduction

Wind energy is one of the fastest growing source of renewable energy. Hence a better
understanding of the aerodynamics of wind turbine systems and of the wake dynamics
can help us improve the efficiency of energy extraction. The structure generated at the
tip of a turbine blade is a helical vortex. In the near wake of a N -blade rotor, a well-
organized structure is observed: N nearly identical helical vortices, each of circulation
Γ as well as a central hub vortex of circulation −NΓ. The hub vortex is centered
along the wind-turbine axis while the N tip vortices of radius R are regularly spaced
along the azimuth about the wind turbine axis (R being close to the blade length).
Experimentally, each vortex found in the wake of a rotor system is also characterized
by its core size and by an internal jet/wake component. This latter feature might be
important since, for straight vortices, an internal jet component is known to strongly
modify the Kelvin waves [1] and to change the stability properties via the swirling jet
instability [2, 3]. Similar consequences may be present for helical vortices.

Such a system of helical vortices and hub vortex evolves at downstream distance
into a turbulent flow [4]. We are interested here in the near-range wake, which plays
an important role in the transition. Numerous theoretical studies have been conducted
on the stability of helical vortices. Both long-wave and short-wave instability modes
were found. Short-wave modes take their origin from the resonance or near resonance
between two Kelvin waves propagating along the vortex core. This resonance is medi-
ated by a deformation of the base flow due to an external strain field, the curvature or
the torsion of the vortex and may result in unstable perturbations, namely elliptic or
curvature instability modes [5–7]. Such instabilities have already been documented for
vortex rings [8]. Long-wave modes involve the displacement of vortices while their core
structure remains untouched. Their dynamics have been mainly predicted in the frame-
work of vortex filaments [9–11]. Helical vortex instabilities were also experimentally
studied [12]. Some quite recent results give evidence to the long-wave mode [13–16].

Three-dimensional (3D) direct numerical simulations (DNS) have been used to
study the dynamics of such vortex systems [17]. Abraham et al. [18] simulated an
asymmetric rotor to trigger such long-wave instability and thus indirectly enhance tur-
bulent mixing and wake recovery. However, the details of the transition to turbulence
is such systems have not been described so far. Using DNS for such a task would be
much time consuming and results may be difficult to analyze. A different approach is
proposed here in which the evolution in the near-wake is studied in terms of instability
theory. A two-step procedure is performed: first, we define a base state which is simple
enough so that its stability analysis is tractable and second, we study the dynamics of
general infinitesimal perturbations in the vicinity of this base flow. This latter could
be an equilibrium state, that is a fixed point of the governing equations, or else an
exact steady solution of the Navier–Stokes equations. If one excepts spatially uniform
and solid-body rotation flows, an unbounded viscous flow without external forcing
never remains steady, as its kinetic energy is converted into thermal energy by viscos-
ity. Nevertheless, it is standard to use the stability theory upon a base solution which
is steady for the Euler equations, but unsteady for the Navier–Stokes equations. In
such an instance, for high Reynolds number, this base flow — if sufficiently smooth —
slowly changes over time by viscous diffusion. This flow is called a quasi-equilibrium
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state. From experimental observations, it seems appropriate for the wake behind a
propeller to search for a base flow which possesses a helical symmetry of helix pitch
2πL along a given axis. This means that we are looking for a base flow invariant with
respect to a rotation of any angle ∆θ around the z-axis coupled with a translation of
∆z = L∆θ along the same axis [19]. Mathematically, a scalar field G such as the pres-
sure field depends only on two variables r and θ − z/L, namely G = G(r, θ − z/L, t)
and the velocity field is such that

u = ur(r, θ − z/L, t)er(θ) + uθ(r, θ − z/L, t)eθ(θ) + uz(r, θ − z/L, t)ez . (1)

This flow uniformly rotates around the z-axis so it may be made steady in a rotating
frame or in a translating frame along the z-axis. For a wind turbine, each helical vortex
possesses an approximate wavelength 2πL along the turbine axis (the z-axis) so that,
in the Betz regime, the reduced pitch L/R is typically of order 0.1 when the tip-speed
ratio is of order 10 [20].

In the present paper, our purpose is not to describe the stability of wind tur-
bine wakes that will be the focus of future works, but to explain in an accurate
manner the numerical tool that we developed to perform such an analysis. A first
procedure aims at computing a quasi-equilibrium state which is helically symmetric,
with prescribed values for circulation, radial position, core size of vortices as well as
their inner jet intensity. This is not straightforward and needs to employ an iterative
approach. Thereafter, the paper addresses the stability of this three-dimensional flow
and describes a method to compute the instability modes. Such problem has already
been considered by Brynjell-Rahkola & Henningson [21]. These authors solve a 3D
Poisson equation to build up a helical state with prescribed vorticity that they inject as
an initial condition into a 3D Navier–Stokes solver to obtain a quasi-equilibrium state.
Thereafter, they extract the dominant instability modes using a matrix-free method
linked to an implicitly restarted Arnoldi algorithm in the full 3D context. They were
able to identify long- and short-wave elliptic instabilities on a two-helical vortex sys-
tem. In such methodology, an integer number of instability wavelengths is necessarily
present in the axially periodic computational box (see section 5 for discussion). We
herein present a two-dimensional (2D) alternative to their fully 3D method, that is
a priori faster and is not subject to this limitation in wavenumber. We validate our
numerical approach by presenting cases of long- and short-wave modes. The results
are compared to a linearized three-dimensional method using the same baseflow, in
the simplest configuration of one helical vortex (one blade without hub vortex).

The structure of the paper is as follows: in section 2, the three-dimensional
Navier–Stokes equations are written using helical variables. The methodology used to
characterize a helical vortex and to obtain a helical base flow with prescribed charac-
teristics are described in section 3; examples of base flows without or with inner jet
component along the helical vortex core are provided in §3.5. Section 4 describes the
way instability modes are computed using helical variables, while section 5 presents
how the instability study is performed with fully three-dimensional simulations.
Results and comparisons between both methods are given in section 6 for so-called
long- and short-wave instability modes. Conclusions are given in section 7.
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2 The Navier–Stokes equations written with helical
variables

We assume the fluid to be incompressible and viscous. As a consequence, the dynamics
is governed by the Navier–Stokes equations. In velocity–pressure formulation, it is
written as

∂u

∂t
+ ω × u = −∇G+ ν∆u

∇ · u = 0 , (2)

where u stands for velocity and ω for vorticity. Parameter ν is the kinematic viscosity
while the scalar field G represents the total head

G ≡ p

ρfl
+

1

2
u2, (3)

with ρfl the fluid density and p the pressure field. Let us change variables from the
standard cylindrical coordinates (r, θ, z) to helical coordinates (r̄, φ̄, z̄):

r̄ = r , φ̄ ≡ θ − z/L , z̄ = z , (4)

while still using the cylindrical coordinate basis (er, eθ, ez). The first and second
derivatives with respect to the cylindrical coordinates in system (2) can be expressed
with the helical coordinates using the relations (p is a positive integer):

∂p

∂rp
=
∂p

∂r̄p
,

∂p

∂θp
=

∂p

∂φ̄p
,

∂

∂z
=
∂

∂z̄
− 1

L

∂

∂φ̄
,

∂2

∂z2
=
∂2

∂z̄2
− 2

L

∂2

∂z̄∂φ̄
+

1

L2

∂2

∂φ̄2
.

(5)

The expression of operators in these equations changes accordingly. From now on, we
only use coordinates (r̄, φ̄, z̄) for operator derivatives and remove the overbar. However
we still use the azimuth θ of the global cylindrical coordinate system. The divergence
∇ · u of velocity vector u then reads:

∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂φ

+
∂uz
∂z

− 1

L

∂uz
∂φ

. (6)

Similarly, the gradient ∇G of the total head becomes

∇G =
∂G

∂r
er +

1

r

∂G

∂φ
eθ +

(
∂G

∂z
− 1

L

∂G

∂φ

)
ez. (7)
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The three components of the Laplacian of velocity field ∆u take the following form:

(∆u)r =
∂

∂r

(
1

r

∂(rur)

∂r

)
+

1

r2
∂2ur
∂φ2

+
∂2ur
∂z2

− 2

L

∂2ur
∂z∂φ

+
1

L2

∂2ur
∂φ2

− 2

r2
∂uθ
∂φ

(∆u)θ =
∂

∂r

(
1

r

∂(ruθ)

∂r

)
+

1

r2
∂2uθ
∂φ2

+
∂2uθ
∂z2

− 2

L

∂2uθ
∂z∂φ

+
1

L2

∂2uθ
∂φ2

+
2

r2
∂ur
∂φ

(∆u)z =
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2
∂2uz
∂φ2

+
∂2uz
∂z2

− 2

L

∂2uz
∂z∂φ

+
1

L2

∂2uz
∂φ2

. (8)

This latter formula for (∆u)z also defines the Laplacian ∆G of a scalar field G(r, φ, z)
in helical coordinates. By taking the curl of velocity, one computes the vorticity
components

ωr =
1

r

∂uz
∂φ

+
1

L

∂uθ
∂φ

− ∂uθ
∂z

ωθ =
∂ur
∂z

− 1

L

∂ur
∂φ

− ∂uz
∂r

ωz =
1

r

∂

∂r
(r uθ)−

1

r

∂ur
∂φ

, (9)

and thereafter the components of the product ω × u.

3 Building a helically symmetric quasi-equilibrium
base flow

In this section, we propose a method to build a base state representing a system of
helical vortices generally characterized by a total circulation Γtot, an external veloc-
ity U∞

z at r → ∞ and which is periodic along the z-axis of period 2πL. This system
could be made of N identical helical vortices each characterized by a circulation Γ
and a central hub of circulation −NΓ so that Γtot = 0 or it could be the same system
without hub so that Γtot = NΓ. Such helical vortices may contain some swirl i.e. an
inner jet component along the vortex core, which makes right-handed and left-handed
helices different. We present and test this method only on a single vortex but the other
cases (N helical vortices with or without hub) can be treated in the same way with
little and obvious modifications. We also set the fluid velocity at infinity to be zero
U∞
z = 0. In an experimental or real flow, as for instance in the wake of a rotating

device, this would amount to adopt the reference frame linked to the incoming flow.
For the study of stability of a single straight vortex, the base states are axisym-

metric smooth solutions such as the Batchelor vortex profiles [22]. Indeed these clearly
are Euler equilibria and hence quasi-equilibria of the Navier–Stokes equations. For
a base flow with two straight vortices like a dipole, no quasi-equilibrium is known
analytically. A quasi-equilibrium flow however can be rapidly reached starting from
two axisymmetric profiles and running a purely two-dimensional simulation in which
three-dimensional instability waves are filtered out. In this final state, each single vor-
tex profile is no more axisymmetric with respect to its own axis but it is made slightly
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elliptic because of the strain applied by one vortex on its companion. For helical vor-
tices, no analytical Euler solutions are known. In the above spirit, we run a simulation
in which helical symmetry is enforced (the HELIX flow solver) so that the non-helical
unstable waves are filtered out. In general, a helical solution is not a quasi-equilibrium
because self-induced strain is present. Nevertheless, in accordance with Ref. [23], we
expect to reach such a quasi-equilibrium rapidly by running the HELIX solver from
an initial state close to quasi-equilibrium. The HELIX solver is explained in §3.1, the
initial condition is given in §3.2. How to check and characterize a quasi-equilibrium
is explained in §3.3. The iterative algorithm allowing to reach a specific state with
prescribed parameter values is presented §3.4.

3.1 Helically symmetric simulation

A helically symmetric flow is governed by the Navier–Stokes equations written in
helical variables (see section 2) in which we set ∂z = 0. This is a generalization
of two-dimensional Navier–Stokes equations with three velocity components but it
actually differs from the pure two-dimensional model, since here in-plane and normal
components are coupled. In this section, we summarize the presentation to be found
in Ref. [24], [19] and [23].

z

x

Π0

y

eB

eϕ

r
er

ϕ

ϕ ≡ θ − z/L = cst

Fig. 1 Geometry of a helical line.

Let us introduce the orthonormal Beltrami basis (er, eφ, eB) (see figure 1): eB ≡
α(ez + reθ/L) is directed along the tangent of helical lines (r, φ) = cst with α(r) ≡
(1+ r2/L2)−1/2 and eφ = eB ×er. In such a basis, a helically symmetric velocity field
may be expressed as

u(r, φ, t) = ur(r, φ, t)er(θ) + uφ(r, φ, t)eφ(r, θ) + uB(r, φ, t)eB(r, θ) , (10)

with

uφ = α(uθ − ruz/L) , uB = α(uz + ruθ/L) . (11)

Similar expressions apply to the vorticity field ω. Incompressibility imposes

∇ · u =
1

r

∂ (rur)

∂r
+

1

rα

∂uφ
∂φ

= 0 , (12)
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hence a stream function Ψ exists such that

rur = ∂φΨ , uφ = −α(r)∂rΨ . (13)

As a consequence, only the helical velocity uB and the stream function Ψ are necessary
to describe a helically symmetric velocity field:

u(r, φ, t) = uBeB + α∇Ψ× eB . (14)

Introducing uH ≡ uB/α − C∞ where C∞ ≡ Γtot/(2πL) + U∞
z and taking the curl

of (14) yields

ωr =
1

r

∂uH

∂φ
, ωφ = −α∂uH

∂r
, (15)

ωB = −LΨ+
2α3

L
(uH + C∞) , with L(•) ≡ 1

rα
∂r[rα

2∂r(•)] +
1

r2α
∂φφ(•) . (16)

Since vorticity is localized in a bounded region of the (r, φ) plane, it is worth to use
velocity uH instead of uB. Indeed velocity uH must vanish away from vortices: uH is
bound to be constant away from the vorticity region, and this constant is zero by
construction since uB/α→ C∞ as r → ∞.

Once we know ωB and uH , we can compute the streamfunction Ψ by solving
the Poisson equation (16) and therefore all the remaining velocity components are
available. The time evolution depends on two dynamical equations: one for velocity
uH and one for vorticity ωB. The first one is obtained as follows. One rewrites the
Navier–Stokes equation (2) introducing the vectorial relation ∇2u = −∇× ω:

∂

∂t
u+ ω × u = −∇G− ν∇× ω. (17)

The above equation is then projected along the direction eB and divided by α yielding
an equation for uH :

∂tuH +NLuH
= νVTuH

, (18)

where the viscous term and the nonlinear term take the form

VTuH
≡ 1

α
LuH − 2

L
αωB, NLuH

= J(uH ,Ψ) (19)

with

J(f, g) ≡ 1

r
(∂rf ∂φg − ∂φf ∂rg) .

The dynamical equation for vorticity ωB is obtained first by taking the curl of
equation (17)

∂

∂t
ω +∇× (ω × u) = −ν∇× (∇× ω) (20)

and second by projecting this equation along eB. This yields

∂tωB +NLω = νVTω , (21)
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where the viscous term and the nonlinear term take the form

VTω = L(
ωB

α
)−

(
2α2

L

)2

ωB +
2α2

L
L(uH) ,

NLω =
1

α
J(αωB,Ψ) +

2α3

L
J(uH ,Ψ) +

α3

L2
∂φ[(uH + C∞)2] . (22)

Quantities are 2π-periodic along the φ direction and can be expanded using a Fourier
decomposition:  ωB(r, φ, t)

uH(r, φ, t)
ψ(r, φ, t)

 =

+∞∑
n=−∞

 ω̂
(n)
B (r, t)

û
(n)
H (r, t)

ψ̂(n)(r, t)

 exp (inφ) (23)

where mode (−n) is the complex conjugate of mode n.
For each n ≥ 0, we first perform the time advance of equations deduced from

(18) and (21) for ω̂
(n)
B (r, t) and û

(n)
H (r, t). Thereafter, we determine ψ̂(n) for n > 0 by

solving the following equation derived from (16):

1

rα
∂r(rα

2∂rψ̂
(n))− n2

r2α
ψ̂(n) = −ω̂(n)

B +
2α3

L
û
(n)
H . (24)

For n = 0, we only need û
(0)
φ which is obtained by solving

1

rα
∂r(rαû

(0)
φ ) = ω̂

(0)
B − 2α3

L
(û

(0)
H + C∞) . (25)

Simulations are performed using a pseudo-spectral method in a finite domain r ≤ Rext.
Details on the HELIX flow solver can be found in Ref. [19, 23, 24]. Conditions at
r = Rext have been improved with respect to these latter references and can be found
in Appendix A.

3.2 Initial condition

The initial condition is chosen so that one reaches a quasi-equilibrium solution made
of a single helical vortex of circulation Γ and helical pitch L. The pitch is directly
prescribed by the helical solver HELIX and circulation is imposed by the initial con-
dition since it is known to be a constant of motion. As mentioned in the introduction
of section 3, this initial state is built not far from a quasi-equilibrium. We assume the
initial flow to be a vortex filament located around a helix going through a point A
located in the Π0 plane at cylindrical coordinates (rA, θA) and we define the plane Π⊥
as the plane containing point A and perpendicular to the helical line passing through
this point (see figure 2a). Point A is associated with the Serret–Frenet basis (eξ, eη, eb)

eξ = er(θA), eη = αA

[
eθ(θA)−

rA
L

ez

]
, eb = eB(rA, θA) = αA

[rA
L

eθ(θA) + ez

]
,

(26)
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with αA ≡ (1 + r2A/L
2)−1/2. The plane Π⊥ is thus orthogonal to unit vector eb and

spanned by the Cartesian basis (eξ, eη). Point M⊥ ∈ Π⊥ can be located by the local
polar coordinates (ρ, ψ) based on point A and the local polar basis (eρ, eψ) defined by

eρ = cosψ eξ + sinψ eη , eψ = − sinψ eξ + cosψ eη . (27)

(a) (b)

z

x

ξ
η

Π0

ψ

Π⊥

ρ

y

eb

eηeξ

M⊥

O

A

rA

z

x

η

Π0

ψ

Π⊥

ρ

M⊥

M0eb

y

ξ

A

∆z

Fig. 2 (a) Geometry of the helical vortex. (b) Illustration of the projection process from plane Π⊥
onto plane Π0 along helical lines, relating M⊥ to M0.

The velocity profiles are axisymmetric and similar to the Batchelor vortex in the
plane Π⊥:

ωB(ρ) = ω⋆B exp(−ρ
2

a2⋆
) , uH(ρ) = u⋆H exp(−ρ

2

a2⋆
) . (28)

The amplitude ω⋆B is determined by the circulation Γ and u⋆H [24]. If the core size a⋆
is small compared to rA and L, it is locally approaching a quasi-equilibrium of two-
dimensional flow with three components. In the HELIX solver, initial conditions are
given in a plane Π⊥ associated to some point A (see section 3.4), it is thus necessary to
transfer the data from plane Π⊥ to plane Π0 before starting the temporal integration.
This procedure is explained in Appendix C.

3.3 Characterization of the final velocity state

At the end of a simulation, we check that the computed state is a quasi-equilibrium in
a frame rotating with an angular velocity Ω0ez about the z axis, where quantity Ω0

is computed using the best correlation of the vorticity field between successive time
steps. For this state, the specific conditions on ωB, uH and Ψ for quasi-equilibria [23]
were found to be verified.

Apart from circulation Γ and pitch L which are fixed by the simulation, the helically
symmetric vortex at a final time of simulation is characterized by a vortex center
in plane Π0. Its location at (Rf, θf) corresponds to the point at which Ψ reaches a
maximum in the vorticity region of plane Π0, or equivalently for a quasi-equilibrium
state (see discussion in [23]) the point at which uH reaches an extremum (or αωB

if uH = 0). For characterization, we need the field values of quasi-equilibrium state
on the plane Π⊥ containing the vortex center and normal to this helical line, i.e.
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normal to vector eb ≡ eB(Rf, θf) for given sets of (ρ, ψ) values centered at point
A on Π⊥ (see figure 2a). From relations (C22), we get (r0, φ0). The field quantities
ur(r0, φ0), uφ(r0, φ0) and uB(r0, φ0) are then interpolated using the fields obtained
by the simulation. This leads to uρ(ρ, ψ), uψ(ρ, ψ) and ub(ρ, ψ). The same procedure
is applied for vorticity. The vortex core size af and inner jet parameter Wf are then

computed by determining the axisymmetric parts ω̂
(0)
b and û

(0)
b of ωb and ub. The

value af is obtained by a best fit of ω̂
(0)
b by the Gaussian expression:

ω̂
(0)
b (ρ) ≈ Γ

πa2f
exp (−ρ

2

a2f
) . (29)

Thereafter, the inner jet velocity Wf is determined by a best fit of û
(0)
b by expression

û
(0)
b (ρ) ≈Wf exp (−

ρ2

a2f
) +Wff . (30)

3.4 Iterative algorithm to obtain the prescribed base flow

Our purpose is to construct a base flow characterized by prescribed circulation Γ,
reduced pitch L, helical radius R0, core size a0 and inner jet parameter W0, using the
evaluation described in section 3.3. In the following, all variables are put in dimension-
less form using R0 as a length scale and R2

0/Γ as a time scale. As a consequence, the
value Γ and R0 below are understood to be both equal to one. We define the Reynolds
number as Re ≡ Γ/ν where ν stands for the kinematic viscosity.

The procedure is an iterative algorithm based at each iteration on a simulation
of the Navier–Stokes equations starting from an initial condition based on the cir-
culation Γ and pitch L as well as three guessed values of dimensionless parameters
(R⋆, a⋆, u

⋆
H). The temporal integration is performed in two stages: an approach stage

at low Reynolds number Re1 during a time period T1 followed by a second stage at
the final Reynolds number Re2 = Re during a time period T2. The goal of the first
stage is to rapidly dampen out Kelvin waves excited by the initial condition and to
save computational time. The state then rapidly converges towards a quasi-equilibrium
as shown in Ref. [23]. The state at the end of the simulation characterized by a
radius Rf, core size af and inner jet parameter Wf. This defines three functions link-
ing the initial parameters to the final ones: R⋆ = FR(Rf, af,Wf), a

2
⋆ = Fa2(Rf, af,Wf),

u⋆H = FW (Rf, af,Wf).
Based on numerical evidence [19], the helical radius and the square of the core size

grow almost linearly in time

drA
dt

≈ λ(L)

Re
,

da2

dt
≈ 4

Re
. (31)

As a consequence, functions FR, Fa2 may be well approximated by

F appr
R = Rf − λ(L)

(
T1
Re1

+
T2
Re2

)
, F appr

a2 = a2f − 4

(
T1
Re1

+
T2
Re2

)
. (32)
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The relation (23) in Ref. [19]

d

dt

∫∫
Π0

uHdS = − 2Γ

LRe
(33)

together with the second formula (31) impose quantity

Q ≡
∫∫

Π0

uHdS +
Γ

2L
a2 (34)

to be time-invariant. Its expression at t = 0 uses equation (28) and assumes a⋆ to be
small yielding

Q =

(
u⋆H
α⋆

+
Γ

2πL

)
a2⋆ with α⋆ ≡

1√
1 + (R⋆)2/L2

. (35)

The expression for Q at t = T1 + T2 uses equation (30) and assumes af to be small

Q =

(
ufH
αf

+
Γ

2πL

)
a2f with αf ≡

1√
1 + (Rf)2/L2

. (36)

The relation found in Ref. [23]

ufH =
Wf

αf
− Γαf

2πL
, (37)

yields

Q =
Wf

α2
f

a2f . (38)

Comparing both expressions makes possible an approximation of FW :

F appr
W = α⋆

(
a2f
a2⋆

Wf

α2
f

− Γ

2πL

)
. (39)

For the first iteration (the first run), the guessed value for (R⋆, a⋆, u
⋆
H) is based on the

above approximation

R⋆ = F appr
R (R0, a0,W0) , a2⋆ = F appr

a2 (R0, a0,W0) , u⋆H = F appr
W (R0, a0,W0) . (40)

Once the time-integration has been performed (at the end of each run), we check the
condition

max

( |ϵr|
R0

,
|ϵa2 |
a20

, |ϵW |
)
< 10−3 , (41)

where ϵr ≡ Rf − R0, ϵa2 ≡ a2f − a20 and ϵW ≡ Wf −W0. If it is met, the values for
parameters (R⋆, a

⋆, u⋆H) are considered as correct and the procedure stops. If not, the
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three parameters are incremented. The correct increments δR⋆ = FR(R0, a0,W0) −
FR(Rf, af,Wf), δa

2
⋆ = Fa2(R0, a0,W0)−Fa2(Rf, af,Wf) and δu

⋆
H⋆ = FW (R0, a0,W0)−

FW (Rf, af,Wf) are then approximated by linearizing around (R0, a0,W0) and approx-
imating the derivatives of functions FR, Fa2 and FW at (R0, a0,W0) by the derivatives
of F appr

R , F appr
a2 and F appr

W yielding

R⋆ → R⋆ − ϵr , a⋆2 → a⋆2 − ϵa2 ,

u⋆H → u⋆H − α⋆
a⋆2

(
2R0a

2
0W0

L2
ϵr +

W0

α2
0

ϵa2 +
a20
α2
0

ϵW

)
,

(42)

and a new run begins. The process is stopped when the criterion (41) is reached. As
an example, for one helical vortex with Γ = 1, L = 0.2, R0 = 1, a0 = 0.1 and W0 = 0,
the process converges in two iterations, the errors are displayed in table 1.

Table 1 Evolution of the distance to prescribed values at
the end of each iteration while generating the base state BS1
(see table 2).

iteration 1 2

ϵr/R0 3.4185 10−3 1.3762 10−6

ϵa2/a20 1.4555 10−2 1.1959 10−4

ϵW 1.0295 10−3 8.0407 10−5

3.5 Base flow: examples

In the following, we present cases of base flow structures. Velocity and vorticity in
this inertial frame are denoted as uBF and ωBF. The values of the base flow param-
eters are listed in table 2. Regarding numerical parameters in plane Π0, the radial
mesh discretisation is regular with Nr = 768 points between the center and the outer
boundary at radius Rext = 2. Azimuthally, we use here Nθ = 384 modes.

A first case (BS1) is characterized by no inner jet component (W0 = 0, infinite
swirl). It is displayed in figure 3. As expected, the component of velocity normal to
the Π⊥-plane, that is ub, is very close to uniform in the vortex core (see figures 3b
and e). However, the helical velocity component uH is not and has a small negative
amplitude, as observed on graph 3a; these negative values are counterbalanced by the
projection of uφ on eb to yield a uniform output.

The two other cases (BS2 and BS3) respectively displayed in figures 4 and 5 possess
an inner jet component, either negative or positive, as clearly seen on the graphs 4e
and 5e.

12



Table 2 Dimensionless parameters for base states.

BS1 BS2 BS3

L 0.2 0.3 0.7
a0 0.1 0.11 0.15
W0 0 −0.23 0.2
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Fig. 3 Base state BS1 (L = 0.2, a0 = 0.1, W0 = 0): (a) velocity component uH(r, φ) in Π0; (b)
ub(ρ, ψ) in Π⊥; (c) vorticity component ωB(r, φ) in Π0; (d) ωb(ρ, ψ) in Π⊥; (e) radial profiles of

û
(0)
b (ρ) and ω̂

(0)
b (ρ). For isocontours, 20 regularly spaced levels are used in the positive range of values

and 20 in the negative range.

4 Stability of a helically symmetric base state using
helical variables

We now look for the stability of the base flow that was computed in the previous
section. In the frame (R) rotating at angular velocity Ω0ez, the base flow is

uBF(R) = uBF − Ω0reθ , ωBF(R) = ωBF − 2Ω0ez . (43)

It is thus steady up to viscous diffusion. Since disturbances superimposed on the quasi-
equilibrium state evolve on a much faster time scale than the diffusion time, we assume
that viscous diffusion can be neglected for the vortex base state only. Following a
standard procedure in wakes and shear layers, we introduce a body force to suppress
the viscous diffusion of the base flow in a clean mathematical way. In the rotating
frame (R), the Navier–Stokes equations read

∂tu
(R) +NL = −∇G(R) +

1

Re
∆u(R) − 1

Re
∆uBF(R) , (44)
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Fig. 4 Same as figure 3, but for base state BS2 (L = 0.3, a0 = 0.11, W0 = −0.23).
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Fig. 5 Same as figure 3, but for base state BS3 (L = 0.7, a0 = 0.15, W0 = 0.2).

∇ · u(R) = 0 , (45)

with NL ≡ ω(R) × u(R) + 2Ω0ez × u(R).

4.1 Linearized solver HELIKZ-LIN

The different fields are the sum of the base state and of a perturbation of order ϵ≪ 1:

u(R)(r, φ, z, t) = uBF(R)(r, φ) + ϵu′(r, φ, z, t) ,
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ω(R)(r, φ, z, t) = ωBF(R)(r, φ) + ϵω′(r, φ, z, t) ,

p(R)(r, φ, z, t) = pBF(R)(r, φ) + ϵp′(r, φ, z, t) . (46)

Keeping only the terms of order ϵ, one obtains the linear system governing per-
turbations, that is incompressibility ∇ · u′ = 0 and the linearized momentum
equation

∂tu
′ + LNL = −∇G′ +

1

Re
VT , (47)

where

LNL ≡ ωBF × u′ + ω′ × uBF(R), G′ ≡ p′

ρfl
+ uBF(R) · u′, VT ≡ ∆v′ . (48)

In cylindrical basis (er, eθ, ez) with helical coordinates, incompressibility reads as

∇ · u′ =
1

r

∂(ru′r)

∂r
+

1

r

∂u′θ
∂φ

+
∂u′z
∂z

− 1

L

∂u′z
∂φ

= 0 (49)

and components of linear terms LNL as

LNLr ≡ ω′
θu

BF(R)
z + ωBF

θ u′z − ω′
zu

BF(R)
θ − ωBF

z u′θ ,

LNLθ ≡ ω′
zu

BF(R)
r + ωBF

z u′r − ω′
ru

BF(R)
z − ωBF

r u′z ,

LNLz ≡ ω′
ru

BF(R)
θ + ωBF

r u′θ − ω′
θu

BF(R)
r − ωBF

θ u′r . (50)

Because the base state does not depend on z, the linear system (47) is not explicitly
dependent on z. Hence, we may restrict the study to modes

u′r
u′θ
u′z
G′

 =


ũr(r, φ, t)
ũθ(r, φ, t)
ũz(r, φ, t)

G̃ (r, φ, t)

 exp (ikzz) (51)

characterized by a single real axial wavelength kz, along the z-axis. Since the base
state does not depend on t, the linear system (47) is not explicitly dependent on t and
we could also restrict the study to modes

u′r
u′θ
u′z
G′

 =


ũr(r, φ)
ũθ(r, φ)
ũz(r, φ)

G̃ (r, φ)

 exp [i(kzz −ϖt)] , (52)

where the frequency ϖ = ω+ iσ is a complex containing the real frequency ω and the
growthrate σ. Introducing ansatz (52) into equation (47) transforms these governing
equations into an eigenvalue problem which is in practice too large to be solved. As a
consequence, we compute the most unstable mode of axial wavelength kz by a different
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approach: we simulate equations (47) starting with initial conditions of the form (51)
with complex velocity perturbations consisting of colored noise in the region of nonzero
basic vorticity (see appendix D.2). The most unstable mode is expected to emerge after
a sufficiently long time from this initial noise since by definition its amplitude increases
with the maximum growthrate among the set of waves of wavenumber kz. The assumed
expression (51) imposes the derivative ∂/∂z in the linearized Navier–Stokes equations
(47)–(49) to reduce to a multiplication by ikz. Furthermore, quantities are 2π periodic
in the φ direction and can be expanded using a Fourier decomposition along φ:


ũr(r, φ, t)
ũθ(r, φ, t)
ũz(r, φ, t)

G̃(r, φ, t)

 =

+∞∑
n=−∞


û
(n)
r (r, t)

û
(n)
θ (r, t)

û
(n)
z (r, t)

Ĝ(n)(r, t)

 exp (inφ) , (53)

where quantities û(n) are complex and no relation exists between mode (−n) and
mode n. Introducing expressions (53) into equations (47)–(49), yields for each mode n:

∇ · û(n) = 0 , (54)

∂û(n)

∂t
+ LNL(n) = −∇Ĝ(n) +

1

Re
V̂T

(n)
, (55)

where linear operators take simpler expressions in modal form:

∇ · û(n) =
1

r

∂(rû
(n)
r )

∂r
− i

n

r
û
(n)
θ + iβû(n)z , (56)

∇Ĝ(n) =

(
∂Ĝ(n)

∂r
,
in

r
Ĝ(n), iβĜ(n)

)
, (57)

VT(n)
r =

∂

∂r

(
1

r

∂(rû
(n)
r )

∂r

)
− χ2û(n)r − i

2n

r2
û
(n)
θ ,

VT
(n)
θ =

∂

∂r

(
1

r

∂(rû
(n)
θ )

∂r

)
− χ2û

(n)
θ − i

2n

r2
û(n)r ,

VT(n)
z =

1

r

∂

∂r

(
r
∂û

(n)
z

∂r

)
− χ2û(n)z , (58)

with

β(n, kz) ≡ kz −
n

L
, χ2(n, kz) ≡

n2

r2
+ β2 . (59)

The vorticity field is expressed as

ω = (ω̂(n)
r , ω̂

(n)
θ , ω̂(n)

z ) exp [i(nφ+ kzz)], (60)
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with

ω̂(n)
r =

in

r
û(n)z − iβû

(n)
θ ,

ω̂
(n)
θ = iβû(n)r − ∂û

(n)
z

∂r
,

ω̂(n)
z =

1

r

∂

∂r
(r û

(n)
θ )− in

r
û(n)r . (61)

In this approach, the three components of term LNL(n) are determined by using a
standard pseudo-spectral method. Boundary conditions must be satisfied at r = ∞
and r = 0. We assume that the flow is potential and decreasing when r → ∞. The
velocity field can be hence expressed as a gradient of a solution of Laplace equation.
For each mode, the potential Φ(n) can be easily shown to satisfy after rescaling a
modified Bessel equation of the second kind [25]. Using the decreasing solution at
r → ∞, this imposes

Φ(n) = BK|n|(|β|r) , (62)

where K|n|(r̂) is a modified Bessel function of the second kind [25].
The boundary conditions at r = 0 originate from regularity considerations at the

axis [26]: for a scalar field f , the Fourier coefficient as r → 0 reads f (n)(r) ∼ r|n|Fn(r)

where Fn(r) is a regular even function. For a vector field v, v
(0)
r vanishes and the

components satisfy v
(0)
θ = rD0(r) and v

(0)
z = V0(r) where D0(r) and V0(r) are even

complex functions. The boundary conditions at r = 0 read:

v
(0)
θ = 0 ,

∂ v
(0)
z

∂ r
= 0 at r = 0 . (63)

For |n| ≥ 1, regularity imposes that v
(n)
r = 1

2 (v
(n)
+ + v

(n)
− ) and v

(n)
θ = 1

2i (v
(n)
+ − v

(n)
− )

with
v
(n)
+ (r) ∼ r|n|+1Gn+(r) , v

(n)
− (r) ∼ r|n|−1Gn−(r) , (64)

where Gn+(r) and G
n
−(r) are even functions. For |n| = 1, equations (64) indicate that

∂ v
(±1)
r

∂ r
= 0 ,

∂ v
(±1)
θ

∂ r
= 0 , v(±1)

z = 0 at r = 0 . (65)

For |n| > 1, Dirichlet conditions are obtained for all the velocity components:

v(n)r = 0 , v
(n)
θ = 0 , v(n)z = 0 at r = 0 . (66)

Details about discretization of this system can be found in appendix D.

4.2 Most unstable mode extraction for a given wavenumber kz

The time evolution using the solver HELIKZ-LIN is shown in figure 6 for a case of
short wavelength instability mode of kz = 20, up to final time Tsim = 150. The growth
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Fig. 6 Perturbation initialized with noise (see figure D2). Real part of axial vorticity ω′
z after

evolution at (a) t = 5, (b) t = 30 and (c) t = 150. Example taken from the case of BS3 computed by
the helical simulation.

rate is extracted from the temporal evolution of the norm Ec based on kinetic energy

Ec ≡
∫
Π0

(ũrũ
†
r + ũθũ

†
θ + ũzũ

†
z) r dr dφ , (67)

where † stands for complex conjugate. As the most unstable mode grows exponentially
as exp[(σ−iω)t], Ec(t) grows as exp(2σt). We then estimate the growth rate as follows.
During the simulation, we compute the quantity

σ(t) =
1

2

ln[Ec(t)/Ec(t−∆t)]

∆t
(68)

at times tn = n∆t with ∆t = 0.5 and n = 1, 2, . . . The simulation is stopped when
σ(tn), σ(tn−1) and σ(tn−2) mutually differ by less than 5 10−5 (or 10−5 in some cases),
which indicates that lnEc varies linearly in time within this precision. When this is
reached, the value of σ(tn) yields σhel. In figure 7a, one displays the norm Ec as a
function of time (black curve). The energy first decreases as the initial perturbation
contains also damped modes, then the most unstable mode emerges and dominates
the evolution. In this example, the growthrate is σhel = 3.638 10−2 (red dashed curve).

In order to determine the mode frequency ωhel in the rotating frame, the normalized
velocity component

ǔz(r, φ, t) =
ũz(r, φ, t)(∫∫

|ũz(r, φ, t)|2 r dr dφ
)1/2

is computed at two different times t1 and t2 typically, with δt′ ≡ t2 − t1 = 0.02 — a
small value being necessary so as to avoid periodicity effects. Since it is expected that

ǔz(r, φ, t2) = ǔz(r, φ, t1) exp[−iωhel(t2 − t1)] , (69)

we determine the frequency based on the best correlation between
ǔz(r, φ, t1) exp(−iωδt′) and ǔz(r, φ, t2) over the whole Π0 plane. The complex
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Fig. 7 Perturbation initialized in figure D2. (a) Temporal evolution of energy Ec (solid curve) and
exponential growth (red dashed corresponding to the growth rate obtained by eq. (68). (b) Real
and imaginary parts of the correlation coefficient I(ω) given by equation (70) (solid curves) and the
deduced frequency (red dashed). (c) Temporal evolution of the real part of perturbation v′z at point
A in plane Π0 in the linear regime (black solid line) as a final check for assessing the values σhel and
ωhel obtained in (a)–(b), represented by the colored dashed line. Example taken from the case of BS3
computed by the helical simulation.

correlation coefficient

I(ω) =

∫∫
ǔz(r, φ, t1)e

−iωδt′ ǔ†z(r, φ, t2) r dr dφ , (70)

would satisfy I(ωhel) = 1 for a perfect correlation; we obtain the frequency by requiring
that I(ωhel) be real, i.e. ωhel = arg[I(0)]/δt′. In figure 7b, one displays the correlation
coefficient I(ω), the imaginary part of which vanishes for the frequency value ωhel =
2.567. The validity of the procedure is confirmed in figure 7c.

The complex instability mode obtained through the linear simulation via the solver
HELIKZ-LIN is characterized by velocity components ũr, ũθ, ũz or vorticity compo-
nents ω̃r, ω̃θ, ω̃z in the plane Π0. It is relevant to display these fields in the section
orthogonal to the vortex filament, that is in the plane Π⊥. Indeed in the asymptotic
limit where the core size of the vortex is small compared to its radius of curvature, one
may study the various instabilities occurring on a helical vortex based on an expan-
sion around the case of a straight vortex [6, 7]. To compare the structure of the modes
found with this asymptotic case, it is clear that the mode structure in the plane Π⊥
is required. To do so, we use the method applied in §3.3 for base flows and, in addi-
tion, take into account a phase shift between point M0 ∈ Π0 and point M⊥ ∈ Π⊥ on
the same helical line but separated along the axis by ∆z = zM⊥ − zM0 (see figure 2b).
This projection process is illustrated in figure 8. Finally, we adopt the local polar
coordinates (ρ, ψ) of axis normal to the plane Π⊥ of center point A (this axis defines
the b-component). The spatial structure of the mode in the plane Π⊥ is obtained by
applying a Fourier decomposition along ψ:

û(m)(ρ) =
1

2π

∫ 2π

0

ũ(ρ, ψ)e−imψdψ , (71)

where m denotes the local azimuthal wavenumber in plane Π⊥. As for normalization,

we look for the maximum modulus of û
(m)
b (ρ) over all radial stations ρ and allm values.

Any quantity u(m)(ρ) is then divided by the corresponding complex value of û
(m)
b (ρ).

19



(a) (b)

0 1 2
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
10

-3

-2 0 2
-3

-2

-1

0

1

2

3

-1

-0.5

0

0.5

1

(c) (d)

0 1 2
-1

-0.5

0

0.5

1

-5

0

5

10
-4

-2 0 2
-3

-2

-1

0

1

2

3

-0.5

0

0.5

Fig. 8 Velocity perturbation: contours for the real part of (a) u′B(r, φ) in plane Π0 zoomed on the
perturbation, and (b) u′b(ρ, ψ) in plane Π⊥. (c) and (d): contour plots of the companion imaginary
parts. Note that u′b has been normalized. Example taken from the case of BS3 computed by the
helical simulation.

5 Instability of a helically symmetric base state
using three-dimensional simulations

The validity of the above procedure is checked against a more classical approach
consisting in three-dimensional linearized simulations in cylindrical coordinates, as
previously used in the context of vortex-ring instabilities [8]. We solve the linearized
Navier–Stokes equations

∂u′

∂t
+ uBF(T) ·∇u′ + u′ ·∇uBF(T) = −∇p′ + ν∇2u′ , (72)

∇ · u′ = 0 , (73)

in the inertial frame in which the base flow is steady. In this frame, the base velocity
field reads uBF(T) = uBF−U0ez, where U0 = −Ω0L, and differs from that of the base
flow (43) in the rotating frame employed in §4. We discretize equations (72) and (73) in
the cylindrical coordinate system with r ≤ Rfar = 100 and z ∈ [0, Lbox] where Lbox =
np × 2πL is an integer number np of helix pitch. For the spatial discretization, the
sixth-order accurate compact scheme [27] is used in the r direction, while the Fourier
spectral method is used in the θ and z directions, in which the periodic boundary
conditions are imposed. The singularity at r = 0 is avoided by expanding the r axis
to −Rfar ≤ r ≤ Rfar, where the radial boundary is placed at Rfar, and placing no grid
point at r = 0. The slip boundary conditions

u′r = 0,
∂

∂r
(ru′θ) =

∂

∂r
u′z = 0 (74)
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are imposed at r = Rfar. For the temporal discretization, the Crank–Nicolson scheme
is used for the viscous terms, while the second-order Adams–Bashforth method is used
for the other terms. The discretized equations are shown in some detail in Appendix
E.1. The Poisson equations, which appear in the formulation in Appendix E.1, can
be decomposed into a set of ordinary differential equations for a single Fourier mode;
they are also solved by a sixth-order accurate compact scheme. Non-uniform stretched
grids are used in the r direction; the grid size at r = Rfar is ∆r = 2, while it is smaller
than 5 × 10−3 for r < 1.94. The numbers of grid points in the r and θ directions
are Nr = 695 and Nθ = 1280, respectively, while the number of grid points in the z
direction is Nz = 384 and 768 for L/R = 0.3 and 0.7, respectively.

We use the base flows obtained in section 3, via the helical simulation. For r ≤
Rext = 2, the base state is obtained through interpolation of helical fields on the non-
uniform grid points. For Rext = 2 ≤ r ≤ Rfar, it is necessary to extrapolate the base
flow from Rext to Rfar. This is possible since the base flow is potential in that region,
and can be explicitly written in terms of Bessel functions.

Since we want to reproduce the computation of a single mode of the form (51)
characterized by a single real axial wavelength kz along the z-axis, this imposes, in the
3D setting, an integer number p of wavelengths within the size of the box Lbox that
is p × 2π/kz = Lbox. If np helix pitches are simulated within the numerical box, the
available wavenumbers are kz = p/(npL) with p = 1, 2, .... Using np > 1 is more CPU
demanding, but can be found necessary for two reasons. First, capturing long-wave
instabilities in a single helical vortex requires using at least np = 2 helix pitches, since
the first long-wave instability corresponds to the mode such that kzL = 1

2 . Second, for
short-wave instabilities, wavenumbers kz = p/L might all fall outside of the instability
range in which a resonance arises.

The initial vorticity distribution of the disturbance is randomized and is concen-
trated in the vortex-core region. It is created along four steps: (i) a randomized scalar
field along the θ direction is generated for each velocity component; (ii) a mask is
used to localize these fields in the region of the base helical vortex in two dimensions;
(iii) the fields are made three-dimensional according to the expected behaviour of
the instability modes; (iv) the obtained field is projected to a divergenceless field u.
Details are given in Appendix E.2.

The growth rate is extracted from the temporal evolution of the kinetic energy
integrated over the whole computational domain, which is equivalent to the procedure
followed in the complex helical framework since the mode is of the form (51). The

frequency is obtained by representing the quantity û
(m)
b (ρ, t) for one of the dominant

azimuthal contributions m in the complex plane at successive times separated by ∆t
(see figure 9, where ∆t = 0.25). From one selected time to the next, this representation

rotates by an angle of ω3D∆t since û
(m)
b is proportional to exp[(σ3D + iω3D)t]. This

allows one to obtain ω3D in the translating frame; in order to compare it with the
frequency ωhel obtained in section 4 which is in the rotating frame, we must take the
Doppler shift into account by adding kzU0.

The spatial structure of the instability mode is represented in figure 10a using
isosurfaces of ω′

B. For the sake of comparison with helical results, figure 10b presents
isocontours plots of u′b in two Π⊥-planes, in perfect agreement with the real and
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Fig. 9 Complex quantity û
(1)
b (ρ, t) plotted in the complex plane for several values of t indicated in

the graph. The representation rotates by an angle of ω3D∆t during ∆t = 0.25, allowing to retrieve
ω3D. Example taken from the case of BS3 computed by 3D simulation.

imaginary parts of the helical simulation (see figure 8b-d). This correspondance is
indeed expected: assume that the 3D real simulation provides the value R1(ρ, ψ) of
u′b in some plane Π⊥(z0), and provides R2(ρ, ψ) at Π⊥(z0+λ/4). Since the instability
mode is of the form (51) and any point (ρ, ψ) in Π⊥(z0) has a companion in Π⊥(z0 +
λ/4), characterized by same (r, φ) but z locations differing by λ/4, this is enough to
reconstruct the complex mode ũ′b ∝ R1(ρ, ψ)−iR2(ρ, ψ) in a Π⊥ plane up to a complex
normalization constant determined as for helical computations (see §4.2).
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Fig. 10 Instability mode structure: (a) isosurfaces of vorticity component ω′
B ; (b) isocontours of

velocity component u′b in two Π⊥ planes distant by λ/4 along z. Example taken from the case of BS3
computed by 3D simulation.

6 Some instability modes of helical vortices

Results are illustrated on three typical modes generated by three different instability
mechanisms. The first case is a long-wave instability mode (axial wavenumber kz = 2.5,
that is kzL = 0.5) developing on base state BS1. The second case is a short-wave mode
(axial wavenumber kz = 106.6, that is kzL = 32) produced by the elliptical instability
on base state BS2. The third case is a short-wave mode (axial wavenumber kz = 20,
that is kzL = 14) produced by the curvature instability on base state BS3. Growth
rates and frequencies computed via the helical simulation method and via the fully
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three-dimensional approach for BS1, BS2 and BS3 are compared in table 3. Getting
the growth rate and the frequency of a single mode typically requires 160h CPU time
via the helical simulation, that is 10 hours on a 16 core desk computer. For the fully
three-dimensional simulation, such a run can require 307200 CPU hours, that is 10
days on the 1280-core cluster AFI-NITY (Fujitsu Server, PRIMERGY CX2550M4).

Table 3 Growth rates σhel as computed via the helical
simulation method and σ3D obtained via three-dimensional
simulation, as well as corresponding frequencies ωhel and
ω3D + kzU0.

BS1 BS2 BS3
kz 2.5 106.67 20

σhel 0.505 0.227 2.47 10−2

σ3D 0.505 0.227 2.43 10−2

ωhel 1.258 41.82 2.566
ω3D + kzU0 1.262 41.80 2.587

6.1 Mesh convergence

The simulation of instabilities in a helical vortex is a challenging task because of
the different spatial scales present in the system. The convergence with respect to
the grid size has thus to be examined carefully. The requirements on the grid size
vary according to several base state parameters: a thinner vortex core a and/or a
stronger inner jet amplitude requires a more refined mesh in both r and φ directions,
while a larger pitch L requires a more refined mesh along φ only. Indeed, a vortex of
core size a0 covers a radial range of extent a0, while it covers an azimuthal range of
a0/(α0R0) = a0(R

−2
0 + L−2)1/2, which increases as L decreases.

In table 3, the values of σhel and ωhel are not directly obtained from a single
simulation, but are extrapolated from the results of several simulations on different
grids. For the instabilities of BS2 and BS3, figure 11 shows the sensitivity of the
results with respect to changes of Nr and Nθ, or equivalently on the radial grid size
hr = Rext/Nr and azimuthal grid size (at r = 1) hθ = 2π/Nθ. Since the radial
definition and the azimuthal definition seem to affect the results in an independent
fashion, it seems reasonable to infer a dependency of the form:

σ(hr, hθ) = σhel +Arh
pr
r +Aθh

pθ
θ + o(hprr ) + o(hpθθ )

ω(hr, hθ) = ωhel +Brh
qr
r +Aθh

qθ
θ + o(hqrr ) + o(hqθθ ) , (75)

without any cross term in hlrr h
lθ
θ . In (75), Ar, Aθ, Br, Bθ are real prefactors, and pr,

pθ, qr, qθ are real exponents (a posteriori orders of the numerical approximation for
the whole procedure). A nonlinear least-square fit of the numerical results with the
above law leads to determine the various parameters, and in particular the Richardson
extrapolated values σhel and ωhel obtained as hr, hθ → 0. Such procedure leads to

23



(a) (b)

384x256

384x384
384x512

512x256

512x384
512x512

768x256

768x384 768x512

3D

hel

40.5 41 41.5 42
0.21

0.22

0.23

0.24

512x768

512x1024

512x1536

768x768

768x1024

768x1536

1024x768

1024x1024

1024x1536

3D

hel

2.56 2.57 2.58 2.59
0.024

0.025

0.026

0.027

0.028

0.029

Fig. 11 Influence of radial and azimuthal definitions on the numerical results for (a) the elliptic
mode of BS2 and (b) the curvature mode of BS3 in the ω–σ plane: helical code (circles with grid
size Nr ×Nθ), Richardson extrapolation from the helical results (black triangle) and 3D code (black
square symbol).

a very good fit for the results of the instability in BS2, and we find σhel = 0.2253,
pr = 1.82, pθ = 3.89 and ωhel = 41.8195, qr = 3.10, qθ = 2.01. For BS3, we find
σhel = 0.0247, pr = 1.82, pθ = 2 and ωhel = 2.566, qr = 2.03, qθ = 1.96. The point
(ωhel, σhel) of such Richardson-extrapolated results is found, for BS2, to be located
very close to the point (ω3D, σ3D) of the 3D simulation performed with a relatively fine
grid (however with a different numerical formulation). For BS3 however, the agreement
between helical and 3D simulations holds mainly for σ, a discrepancy of 1% is found
for ω.

In conclusion, the number of grid points along θ seems to be of utmost importance
here. It is recommended at least to use a Richardson extrapolation along θ, or to use
even finer grids in the azimuthal direction.

6.2 Case of long-wave instability mode
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Fig. 12 Long-wave mode kz = 2.5 for base state BS1 (L = 0.2, a0 = 0.1, W0 = 0). (a) Isocontours
in plane Π⊥ for the real part of ω′

b(ρ, ψ) and (b) the imaginary part of ω′
b(ρ, ψ). (c) Top: radial

structures of dominant azimuthal modes |ω̂(m)
b | as functions of ρ/a0 (symbols: helical code, black

line: 3D code); bottom: enstrophy ratios Z(m)/Z (red circles: helical code, black squares: 3D code).
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The first illustration is a long-wave instability in the single helical vortex base
flow BS1. We use np = 2 helix pitches in 3D simulations thus enabling wavenumber
kz = 1/(2L) which corresponds to the first long-wave mode. Long-wave modes are
displacement modes, i.e. modes which tend to shift the vortex away from the baseline,
without deforming the vortex core. To analyse such modes, it is more pertinent to use
quantities relative to vorticity. Figures 12a-b display the real and imaginary part of
the vorticity perturbation. The two lobes ± are indeed typical of the structure of the
displacement of a Gaussian vortex. We also consider enstrophy ratios Z(m)/Z defined
by

Z(m) =
1

4

∫ ∞

0

(|ω̂(m)
ρ |2 + |ω̂(m)

ψ |2 + |ω̂(m)
b |2)ρdρ , Z ≡

∑
m

Z(m) . (76)

Such ratios reflect the distribution of energy over different azimuthal contributions, as
shown here in the bottom graph of figure 12c. The radial structure of the dominant
azimuthal contributions is shown in the top graph of figure 12c. This confirms that
the longwave mode involves two symmetric displacement modes m = ±1, the radial
structure being the derivative of a Gaussian base vorticity as expected. Furthermore,
the agreement between helical and 3D simulation is excellent.

6.3 Case of elliptic mode
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Fig. 13 Elliptic mode with kz = 106.67 for base state BS2 (L = 0.3, a0 = 0.11, W0 = −0.23).
Isocontours in plane Π⊥ for (a) real part of ω′

b(ρ, ψ), (b) real part of u′b(ρ, ψ), (c) imaginary part
of ω′

b(ρ, ψ), (d) imaginary part of u′b(ρ, ψ). (e) Top: radial structures of dominant azimuthal modes

|û(m)
b | as functions of ρ/a0 (symbols: helical code, black line: 3D code); bottom: energy ratios E(m)/E

(red circles: helical code, black squares: 3D code).
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The second illustration is a short-wave elliptic instability of the single helical vortex
base flow BS2. Here, we use np = 1 helix pitch in the 3D simulation. Results are
displayed in figure 13. Graphs 13a and 13c show the real and imaginary part of the
normal vorticity perturbation. The structure of the real part (graph a) is in agreement
with the asymptotic study represented in figure 3b of Ref. [6] for a slightly different
intensity of the inner jet parameter (W0 = −0.2 instead of −0.23 here). Graphs 13b
and 13d display the real and imaginary part of the normal velocity perturbation.
As shown in graph 13e displaying energy ratios E(m)/E and radial structures of the
dominant azimuthal contributions, this mode stems from the resonance of two Kelvin
waves at m = 0 and m = 2 excited by the elliptical deformation of the base flow.
Results from the helical simulation and from the 3D one are found in close agreement
with each other, as already discussed in §6.1.

6.4 Case of curvature mode
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Fig. 14 Curvature mode with kz = 20 for base state BS3 (L = 0.7, a0 = 0.15,W0 = 0.2). Isocontours
in plane Π⊥ for (a) real part of ω′

b(ρ, ψ), (b) real part of u′b(ρ, ψ), (c) imaginary part of ω′
b(ρ, ψ),

(d) imaginary part of u′b(ρ, ψ). (e) Top: radial structures of dominant azimuthal modes |û(m)
b | as

functions of ρ/a0 (symbols: helical code, black line: 3D code); bottom: energy ratios E(m)/E (red
circles: helical code, black squares: 3D code).

The last illustration is a short-wave curvature instability of the single helical vortex
base flow BS3. We use np = 1 helix pitch in the 3D simulation. Results are displayed
in figure 14. Graphs 14a and 14c show the real and imaginary part of the normal
vorticity perturbation. The structure of the real part (graph 14a) is in agreement with
the asymptotic study represented in figure 7e of Ref. [7] for the same intensity of the
inner jet parameter (W0 = 0.2). Graphs 14b and 14d display the real and imaginary
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part of the normal velocity perturbation. Graph 14e demonstrates that this mode
stems from the resonance of two Kelvin waves at m = −1 and m = 0. Resonance is
due here to vortex curvature, which shifts the core of the base flow vortex outwards
(i.e. a m = 1 excitation). Results from the helical simulation and from the 3D one are
found in close agreement with each other, as discussed in §6.1.

7 Concluding remarks

In this paper, an original procedure aimed at numerically investigating the linear
stability properties of a helical vortex is presented. It is based on the use of helical
symmetry for the basic flow and plane axial waves for the disturbances, which makes it
possible to simulate this three-dimensional system with a two-dimensional CPU cost.
The procedure is assessed and fully validated against results from standard linearized
three-dimensional computations.

The procedure involves two steps. In the first step, a quasi-equilibrium flow is com-
puted using a Navier–Stokes solver HELIX via a generalized ψ − ω formulation using
helical variables and helical symmetry. An iterative procedure leads to a helical solu-
tion with prescribed parameter values: the helical pitch is enforced in the equations,
the vortex circulation is imposed by the initial condition (a Gaussian helical vortex
with circular core), so that the three remaining parameters (helical radius, core size
and inner jet component) have to be iteratively corrected up to the desired state.
Indeed, each iteration consists in a direct two-dimension-like simulation during which
the three parameters evolve in a coupled manner towards a quasi-equilibrium state.
This first step may be extended to generate states with multiple vortices with same
pitch, in particular regularly interleaved helical vortex systems pertinent for rotor wake
flows. A hub vortex may also be added, either helical with the same pitch, or axisym-
metric since axisymmetric flows are also helically symmetric. For multiple vortices,
additional treatments such as azimuthal filtering or selective frequency damping may
be found necessary since such configurations are known to be unstable with respect to
helically symmetric perturbations, especially at low pitch [11]. The second step con-
sists in extracting the mode that dominates the linear instability of the above base
flow, for a prescribed value of the axial wavenumber kz. This is done using an origi-
nal Navier–Stokes solver HELIKZ-LIN linearized in the vicinity of such helical state,
using primitive complex variables and assuming a dependency of the perturbation
fields in eikzz. Starting from white noise or from an approximate solution (obtained
for instance for a close enough set of parameters), the most unstable mode emerges
and can be characterized — growth rate, frequency, structure.

The overall procedure is illustrated on three unstable modes arising in different
base states through three different instability mechanisms. Long-wave mode as well
as short-wave elliptic and curvature modes emerging through a subtle two-wave res-
onance phenomenon involving the base flow have been accurately described. Special
attention has been paid to convergence with respect to the grid definition, as short-
wave modes have radial length scales much smaller than the helix radius or pitch, here
in a ratio of 1 to 100 typically. Results are shown to agree very closely with those
derived from a standard fully three-dimensional procedure, which validates the new
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procedure. With respect to the three-dimensional procedure, CPU time is divided by a
factor roughly equal to the number of grid points that would be needed along the axial
direction: computations are thus 100–1000 times faster. This feature makes parametric
studies possible, e.g. branch continuation with respect to the axial wavenumber kz, to
Reynolds number, etc. It should be emphasized that here, the instability wavenumber
kz can be chosen arbitrarily, whereas in three-dimensional periodic formulations, it is
quantized. For shortwave modes stemming from resonances and often characterized by
very narrow instability tongues, this is a serious advantage. This numerical procedure
makes the investigation of instabilities in helical vortex systems possible, and should
improve the knowledge on the mechanisms at play in the transition of rotor wakes to
turbulence.

However, owing to the assumptions needed to reduce the problem to a two-
dimensional one, the procedure may suffer from some limitations, which are now
discussed. First, the assumption of helical symmetry, which is often correct locally,
clearly does not hold when considering the whole rotor wake. The helical radius is
known to increase in the streamwise direction as the axial velocity gradually decreases,
on typical distances comparable to the rotor diameter. In the meantime, the vortex-
core radius evolves through viscous or turbulent diffusion, and so does the internal
jet/wake component. The development of a long-wave instability may also change
the spacing between successive coils, locally altering the pitch and the vortex-core
deformation. Under such circumstances, the present study determines local instability
properties at each downstream location. Second, section 3 describes a methodology
to reach a fully developed base flow, i.e. a quasi-steady state of the Navier–Stokes
equations, for which velocity and vorticity distributions in the vortex core are near
Gaussian. The instability study of section 4 has been performed on such states. Yet,
in practical situations, vorticity shed from the blades may roll up around the tip vor-
tices [28], approaching steady solutions of Euler equations which are not Gaussian.
The present procedure is able to compute the instability properties in this case as well:
it is not limited to Gaussian states. Last, in the present study, flows are laminar, a
strong limitation when considering engineering flows such as wind turbines. However,
the present approach does not preclude the use of a turbulence model. Some studies
couple the use of a turbulent base flow and the determination of instabilities [29, 30]:
this is a priori valid when spatial scales are well separated. The turbulence model
should then be adapted to helically symmetric flows, which, to our knowledge, is still
to be done.
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Appendix A Boundary condition at r = Rext for
the HELIX code

Away from the vortex, the flow is potential. For all modes n ̸= 0, we thus impose

ω
(n)
B = u

(n)
H = 0 . (A1)

The boundary condition on Ψ(n) is imposed through a Robin condition (mixed
boundary condition) at r = Rext:

∂r[Ψ
(n)] = −|n|CnΨ(n)(Rext) . (A2)

When L is infinite, the mode Ψ(n) for the streamfunction satisfies away from the vortex

1

r
∂r[r∂r(Ψ̂

(n))]− n2

r2
Ψ̂(n) = 0 , (A3)

with solution Ψ(n) = −iB/r|n|, hence Cn = 1/Rext. When L is finite, the procedure
is different. In the potential region, the velocity field can also be expressed as the
gradient of a solution Φ of the Laplace equation. Mode Φ(n) then satisfies a modified
Bessel equation. Using the decreasing solution at r → ∞, this imposes

Φ(n) = BK|n|(|β|r) with β = −n
L
, (A4)

where K|n|(r̂) is a modified Bessel function of the second kind [25]. Since, for all n ̸= 0

u(n)r =
∂Φ(n)

∂r
=

in

r
Ψ(n) , u(n)φ =

in

rα
Φ(n) = −α∂Ψ

(n)

∂r
, (A5)

equations (A4) and (A5) yield

Cn =
−L

Rextα2
ext

1

H|n|(R̂ext)
, (A6)

where

α2
ext ≡

1

1 +R2
ext/L

2
, H|n|(r̂) ≡

K ′
|n|(r̂)

K|n|(r̂)
, r̂ ≡ |β|r , R̂ext ≡ |β|Rext . (A7)

For mode n = 0, since the flow is potential away from the vortex, we impose

ω
(0)
B = u

(0)
H = 0 . (A8)
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For the velocity u
(0)
φ , equation (16) reads away from the vortex:

∂r

[
rαu(0)φ

]
= −2

rα4

L
C∞ with C∞ =

Γ

2πL
+ U∞

z . (A9)

This equation can be exactly integrated with the following condition at r = ∞:

u
(0)
φ (∞) = −U∞

z /L, which yields in the potential region

u(0)φ = −U∞
z

√
1 + x

x
+

C∞√
x(x+ 1)

, x = (r/L)2. (A10)

This Dirichlet condition is imposed at r = Rext.

Appendix B Function H|n|(r̂)

Let us evaluate the function H|n|(r̂) defined in equation (A7) which is based on a
modified Bessel function of the second kind K|n|(r̂) [25]. Let us introduce the small
parameter ϵ and the integer nlarge e.g. ϵ = 0.01 and nlarge = 10.

B.1 Expressions for H0(r̂)

Three cases can be distinguished:

• for small r̂ ≤ ϵ, the asymptotic form of the Bessel function K0 reads:

K0(r̂) ∼ − log

(
r̂

2

)
− γc

involving the Euler–Mascheroni constant γc ≈ 0.58, so that the function H0 behaves
as:

H0(r̂) =
K ′

0(r̂)

K0(r̂)
∼ 1

r̂(γc + log( r̂2 ))
; (B11)

• for ϵ < r̂ < 1/ϵ, one uses a standard library to compute

H0(r̂) =
K ′

0(r̂)

K0(r̂)
;

• for large r̂ ≥ 1
ϵ , we use an asymptotic expression for the Bessel K0 function [25]

K0(r̂) ∼ e−r̂
√

π

2r̂

(
1− 1

8r̂
+O(r̂−2)

)
,

leading to the following expression:

H0(r̂) =
K ′

0(r̂)

K0(r̂)
∼ −

(
1 +

1

2r̂

)
. (B12)
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B.2 Expressions for H|n|(r̂) for 0 < |n| ≤ nlarge

For |n| > 0 the function H|n| is such that

H|n|(r̂) ≡
1

K|n|(r̂)

∂K|n|(r̂)

∂r̂
= −K|n|−1

K|n|
− |n|

r̂
. (B13)

Three cases are distinguished:

• for small r̂ < ϵ, since

H1(r̂) =
K ′

1(r̂)

K1(r̂)
∼ −1

r̂
for |n| = 1 ,

one has
K|n|−1(r̂)

K|n|(r̂)
≃ r̂

|n| − 1
if |n| ≥ 2 ,

so that

H|n|(r̂) ∼ −|n|
r̂

; (B14)

• for ϵ ≤ r̂ ≤ n2large, after using a standard library to compute the ratio of Bessel
functions of the second kind K0(r̂)/K1(r̂), one computes K|n|−1(r̂)/K|n|(r̂) using
the recurrence:

K|n|(r̂)

K|n|+1(r̂)
=

[
K|n|−1(r̂)

K|n|(r̂)
+

2 |n|
r̂

]−1

; (B15)

• for large r̂ > n2
large, an asymptotic expression can be used for the Bessel K|n|

function [25]

K|n|(r̂) ∼ e−r̂
√

π

2r̂

(
1 +

4n2 − 1

8

1

r̂
+O(r̂−2)

)
,

and H|n|(r̂) is thus expressed as:

H|n|(r̂) =
K ′

|n|(r̂)

K|n|(r̂)
∼ −

(
1 +

1

2r̂

)
. (B16)

B.3 Expressions for H|n|(r̂) for |n| > nlarge

Four cases can be distinguished:

• for r̂ < ϵ|n|, as the asymptotic form of the Bessel function K|n| reads:

K|n|(r̂) ∝
1

2
(|n| − 1)!

(
r̂

2

)−|n|

,

one has
K|n|−1(r̂)

K|n|(r̂)
≃ r̂

|n| − 1
,
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and the function H|n| thus behaves as:

H|n|(r̂) ∝ −|n|
r̂

; (B17)

• for ϵ|n| < r̂ < |n|/ϵ, the following holds

H|n|(r̂) =
K ′

|n|(r̂)

K|n|(r̂)
= −

|n|
√

1 + r̂2

|n|2

r̂

|n| − V

|n| − U
, (B18)

with

V ≡ 1

24
(−9p+ 7p3) , U ≡ 1

24
(3p− 5p3) , p ≡ 1√

1 + r̂2

|n|2

;

• the case |n|/ϵ < r̂ < |n|2 is never met in our computations;
• for |n|2 ≤ r̂, an asymptotic expression can be used for the Bessel K|n| function [25]

K|n|(r̂)
∣∣
r̂→+∞ ∝ e−r̂

√
π

2r̂

(
1 +

4n2 − 1

8

1

r̂
+O(r̂−2)

)
.

As a consequence, H|n|(r̂) is expressed as:

H|n|(r̂) =
K ′

|n|(r̂)

K|n|(r̂)
∝ −

(
1 +

1

2r̂

)
. (B19)

Appendix C Relating Π⊥ and Π0 planes

It is explained here how to transfer the data from plane Π⊥ to plane Π0 (see figure 2)
in the HELIX and HELIKZ-LIN solvers. Indeed, this is useful to building the ini-
tial condition as well as characterizing the final state or instability modes. Starting

from (27) and
−−−→
AM⊥ = ρeρ, one gets

−−−→
OM⊥ = (rA + ρ cosψ)eξ + ρ sinψeη . (C20)

If the point M0 ∈ Π0 given by helical variables (rM0 , φM0) belongs to the helical line
passing through M⊥ (see figure 2b) then

−−−→
OM⊥ = L(θM⊥ − φM0

) ez + rM⊥ er(θM⊥), rM⊥ = rM0
. (C21)

Projecting the two equations (C20) and (C21) along the axis x, y and z, gives

rM0
cos (θM⊥) = (rA + ρ cosψ) cos θA − αA sin θAρ sinψ ,

rM0 sin (θM⊥) = (rA + ρ cosψ) sin θA + αA cos θAρ sinψ ,

L(θM⊥ − θM0
) = −αA

rA
L
ρ sinψ . (C22)
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Knowing the values (ρ, ψ), it is straightforward to determine rM0 and the azimuthal
location θM⊥ from the first two equations of (C22) and to deduce the value of θM0

through the last one. Now, using a standard procedure, it is easy to do the reverse
and find (ρ, ψ) associated to a given location (r0, φ0) inside the vortex. Indeed, this is
useful for the initial condition of the HELIX code: one computes the fields ωB(r0, φ0)
and uH(r0, φ0) at specific points (r0, φ0). Once this done, the symmetry (10) yields
ωB(r0, θM0) = ωB(ρ) and uH(r0, θM0) = uH(ρ) directly from the analytic formula (28).

To now characterize the final state of a simulation in the Π⊥ plane, we need to
express the velocity field at point M⊥ using the basis (eρ, eψ, eb)

u(M⊥) = uρ(M⊥)eρ + uψ(M⊥)eψ + ub(M⊥)eb ,

with respect to the velocity field at the corresponding point M0 in plane Π0 given by

u(M0) = ur(M0)er(M0) + uφ(M0)eφ(M0) + uB(M0)eB(M0) .

The helical symmetry implies

u(M⊥) = ur(M0)er(M⊥) + uφ(M0)eφ(M⊥) + uB(M0)eB(M⊥) .

Projected on the basis (eρ, eψ, eb), this yieldsuρ(M⊥)
uψ(M⊥)
ub(M⊥)

 =

[ur(M0)er(M⊥) + uφ(M0)eφ(M⊥) + uB(M0)eB(M⊥)] ·

 cosψ eξ + sinψ eη
− sinψ eξ + cosψ eη

eb

 ,

where

er(M⊥) · eξ = cos(θM⊥ − θA) ,

er(M⊥) · eη = αA sin(θM⊥ − θA) ,

er(M⊥) · eb = αA
rA
L

sin(θM⊥ − θA) ,

eφ(M⊥) · eξ = αM⊥ sin(θA − θM⊥) ,

eφ(M⊥) · eη = αM⊥αA

[rM⊥rA
L2

+ cos(θM⊥ − θA)
]
,

eφ(M⊥) · eb = αM⊥αA

[
−rM⊥

L
+
rA
L

cos(θM⊥ − θA)
]
,

eB(M⊥) · eξ = αM⊥

rM⊥

L
sin(θA − θM⊥) ,

eB(M⊥) · eη = αM⊥αA

[
−rA
L

+
rM⊥

L
cos(θM⊥ − θA)

]
,

eB(M⊥) · eb = αM⊥αA

[
1 +

rM⊥rA
L2

cos(θM⊥ − θA)
]
.

33



To express the vorticity field located at M⊥ using the basis (eρ, eψ, eb)

ω(M⊥) = ωρ(M⊥)eρ + ωψ(M⊥)eψ + ωb(M⊥)eb

with respect to the vorticity field at the corresponding pointM0 in plane Π0, the same
procedure applies and provides expressions connecting the vorticity field located at
M⊥ and M0.

Let us emphasize that velocity and vorticity components ub(M⊥) and ωb(M⊥) differ
from components uB(M⊥) and ωB(M⊥) except when M⊥ = A.

Appendix D Numerical treatment of solver
HELIKZ-LIN for stability modes

In the code HELIKZ-LIN, equations as well as boundary conditions are discretized
using staggered grids in the (r, φ) plane (see figure D1). Radial differentiations use 2nd
order schemes that are centered at interior points. Differentiations in φ are performed
in the spectral space. Time advance is also performed in the spectral space in two
steps: (i) a prediction step using progressive 2nd order finite differences in time, where
viscous VT terms (58) are fully implicited while LNL terms (61) are evaluated using a
2nd order Adams–Bashforth extrapolation scheme; (ii) a projection step that evaluates
the pressure that allows to update the velocity field to meet the incompressibility
condition.

The outer boundary is set at the finite radius r = Rext that is located in away
from the vorticity region. The mesh used in plane Π0 is regular in both radial and
azimuthal direction, with Nr = 768 or 1024 grid points along the radial direction. In
the azimuthal direction, we selectNθ =

3
2×256 grid points but, because of the standard

2/3 antialiasing procedure, only azimuthal modes −128 < n ≤ 128 are effectively used.

ri

ri+1 θj+1

θj

ωz

uθ, ωr

ur, ωθ

uz, p

Fig. D1 HELIKZ solver: elementary cell showing where the quantities are located.

D.1 Boundary conditions at the outer boundary r = Rext

To determine the boundary conditions at r = Rext, we use the condition (62) obtained
by assuming that the flow is potential at this outer boundary. Boundary conditions
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to be imposed at r = Rext are Robin conditions (mixed boundary conditions)

∂Φ(n)

∂r
= C

(n)
Φ Φ(n) (D23)

∂v
(n)
r

∂r
= C(n)

r v(n)r ,
∂v

(n)
θ

∂r
= C

(n)
θ v

(n)
θ ,

∂v
(n)
z

∂r
= C(n)

z v(n)z , (D24)

where C
(n)
Φ , C

(n)
r , C

(n)
θ and C

(n)
z are constants listed below (proofs involve very

standard calculations).
We set

r̂ ≡ |β|r , R̂ext = |β|Rext , β ≡ kz −
n

L
. (D25)

When kz ̸= n/L, we have

C
(n)
Φ = C(n)

z = |β|H|n|(R̂ext) , C(n)
r =

β2 + n2/R2
ext

C
(n)
Φ

− 1

Rext
, C

(n)
θ = C

(n)
Φ − 1

Rext
,

(D26)
where expressions for H|n| are given in Appendix B.

When kz = n/L, the conditions become

C
(n)
Φ = − |n|

Rext
, C(n)

r = C
(n)
θ = −|n|+ 1

Rext
, u(n)x = 0 . (D27)

D.2 Randomized initial condition

Given an axial wavelength kz, we run the solver HELIKZ-LIN with an initial condition
for the complex velocity perturbations. It generally consists of colored noise set only
in the region of nonzero basic vorticity. First we generate real and imaginary parts of
radial, azimuthal and axial components in the Fourier space

f̂ (n)α (ri) = exp

[
−
(
ri − r0
∆r

)6
]
exp

[
−
(
n− n0
∆n

)4
]
ξ
(n)
i , α = r, θ, z, (D28)

where ξ
(n)
i are random fields uniform in [− 1

2 ,
1
2 ]. The multiplicative factors limit the

radial range of the perturbations and its spectral extent (r0 = 1, ∆r = 0.3, n0 = 42
and ∆n = 42). The filter in r is introduced to avoid the singular polar axis. Second
these fields are transformed to the physical space. In order to restrict the perturbation
to the region of non vanishing basic vorticity, we filter the perturbation according
to ṽα(ri, θj) = M(ri, θj)f̃α(ri, θj) where the value of the mask M depends on the
level of the normalized basic vorticity ωBF/max(ωBF) at point (ri, θj)

1. Third, the
components are transformed back to spectral space where a projection is performed to
get a divergenceless velocity field û. The resulting field is then normalized so that the
maximum modulus over the values of the 3 velocity components is 10−2. Figure D2

1Specifically, if ωBF/max(ωBF) < 10−2, then M = 0, if ωBF/max(ωBF) > 10−1, then M = 1, while M
takes intermediate values between these two thresholds (a cubic spline is used in between).
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presents an example of initial condition in the Π0 plane with Rext = 2, Nr = 768 and
Nθ = 384.

-2 0 2
-2

-1

0

1

2

-2

0

2

Fig. D2 An example of initial perturbation with kz = 20 displayed in the Π0 plane: the real part
of axial vorticity ω′

z for the base state BS3 (L = 0.7, a = 0.15, W0 = 0.2).

There are two cases where the initial condition does not consist in the above noise
distribution. The first instance corresponds to branch continuation, where we gradually
change the parameter kz: the code is restarted from the final state of another run.
For instance, the state at t = 150 for kz = 20 represented in figure 6c can be used as
initial condition for a simulation at kz = 19.9 or at kz = 20.1. Then convergence can
be reached after a time period as short as t = 10, but this naturally depends on the
step in kz selected and might substantially vary along the branch. The second instance
corresponds to changes of mesh resolution. In this case, both base flow and complex
mode are interpolated/extrapolated on a different grid, before the code is restarted.
This has been extensively used in the convergence study presented in §6.1.

Appendix E Numerical treatment of
three-dimensional linearized
Navier–Stokes equations

E.1 Temporal discretization

We write the linearized incompressible Navier–Stokes equations in the following form

∂u′r
∂t

= Hu + ν

(
∇2 − 1

r2

)
u′r − ν

2

r2
∂u′θ
∂θ

,

∂u′θ
∂t

= Hv + ν

(
∇2 − 1

r2

)
u′θ + ν

2

r2
∂u′r
∂θ

,

∂u′z
∂t

= Hw + ν∇2u′z, (E29)

0 =
∂u′r
∂r

+
u′r
r

+
1

r

∂u′θ
∂θ

+
∂u′z
∂z

, (E30)
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where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+
∂2

∂z2

and

Hu = hu −
∂p′

∂r
, Hv = hv −

1

r

∂p′

∂θ
, Hw = hw − ∂p′

∂z
, (E31)

with

hu = −uBF(T)
r

∂u′r
∂r

− u
BF(T)
θ

r

∂u′r
∂θ

− uBF(T)
z

∂u′r
∂z

+
2u

BF(T)
θ u′θ
r

− u′r
∂u

BF(T)
r

∂r
− u′θ

∂u
BF(T)
r

∂θ
− u′z

∂u
BF(T)
r

∂z
,

hv = −uBF(T)
r

∂u′θ
∂r

− u
BF(T)
θ

r

∂u′θ
∂θ

− uBF(T)
z

∂u′θ
∂z

− u
BF(T)
θ u′r
r

− u
BF(T)
r u′θ
r

− u′r
∂u

BF(T)
θ

∂r
− u′θ

∂u
BF(T)
θ

∂θ
− u′z

∂u
BF(T)
θ

∂z
,

hw = −uBF(T)
r

∂u′z
∂r

− u
BF(T)
θ

r

∂u′z
∂θ

− uBF(T)
z

∂u′z
∂z

− u′r
∂u

BF(T)
z

∂r
− u′θ

∂u
BF(T)
z

∂θ
− u′z

∂u
BF(T)
z

∂z
. (E32)

The velocity fields are expanded in Fourier series as

u′r =
∑
n,q

ûn,q(r, t)e
i(nθ+qk0z) (E33)

with similar expansions for u′θ and u
′
z, where k0 = 2π/Lbox. In temporal discretization

with the Crank–Nicolson scheme for the viscous terms, the cross terms 2νr−2∂u′θ/∂θ
and 2νr−2∂u′r/∂θ in (E29) are moved to Hu and Hv together with the corresponding
terms taking account of the behaviour of ûn,q and v̂n,q near r = 0

ûn,q = Ar|n|−1 +O(r|n|), v̂n,q = i sgn(n)Ar|n|−1 +O(r|n|) for n ̸= 0 ,

û0,q = Ar +O(r2) , v̂0,q = Br +O(r2) . (E34)

This makes the numerical procedure simpler. The resulting discretized equations in
the Fourier space are[

1− ν
∆t

2
D|n|−1,q

]
û(l+1)
n,q =

∆t

2

(
3Ĥ(l)

u;n,q − Ĥ(l−1)
u;n,q

)
+

[
1 + ν

∆t

2
D|n|−1,q

]
û(l)n,q[

1− ν
∆t

2
D|n|−1,q

]
v̂(l+1)
n,q =

∆t

2

(
3Ĥ(l)

v;n,q − Ĥ(l−1)
v;n,q

)
+

[
1 + ν

∆t

2
D|n|−1,q

]
v̂(l)n,q[

1− ν
∆t

2
Dn,q

]
ŵ(l+1)
n,q =

∆t

2

(
3Ĥ(l)

w;n,q − Ĥ(l−1)
w;n,q

)
+

[
1 + ν

∆t

2
Dn,q

]
ŵ(l)
n,q , (E35)
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where f (l) denotes the value of f at the l-th time step and

Dn,q ≡
d2

dr2
+

1

r

d

dr
−
(
n2

r2
+ k20q

2

)
, (E36)

Ĥu;n,q ≡ ĥu;n,q −
∂p̂n,q
∂r

+
2ν

r2
(−|n|ûn,q − inv̂n,q) ,

Ĥv;n,q ≡ ĥv;n,q − in
p̂n,q
r

+
2ν

r2
(−|n|v̂n,q + inûn,q) ,

Ĥw;n,q ≡ ĥw;n,q − ik0qp̂n,q . (E37)

The boundary conditions (74) at r = Rfar become

ûn,q = 0,
∂

∂r
(rv̂n,q) =

∂ŵn,q
∂r

= 0 .

The Poisson equation for p′ is also expressed in the Fourier space as

[
d2

dr2
+

1

r

d

dr
−
(
n2

r2
+ k20q

2

)]
p̂n,q =

dĥu;n,q
dr

+
ĥu;n,q
r

+
im

r
ĥv;n,q+ik0qĥw;n,q , (E38)

with the boundary condition

∂p̂n,q
∂r

= 0 .

The equations (E35) and (E38) for each Fourier mode are second-order ordinary
differential equations; they are solved by a sixth-order accurate compact scheme.

E.2 Randomized initial condition

The initial condition is made up with a randomized field localized in the region of the
basic vorticity, and furthermore, has the spatial dependency expected for instability
modes, as explained below.

First, a randomized scalar field is generated: for each component of the velocity
field in the cylindrical coordinate system, a one-dimensional scalar field fα in θ is
generated in the Fourier space as

f̂ (n)α = ξ1 exp (2πiξ2) exp

[
−
( n

∆n

)2]
, α = r, θ, z, (E39)

where ξ1 and ξ2 are random numbers uniform in [0, 1] and ∆n ≡ 2pL/R (integer p is
the number of instability wavelengths within the numerical domain). Then, the field
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is made local in two dimensions: a two-dimensional field is created from fα as

gα(r, θ) = exp

[
−
(
r − r0
∆r

)2
]
exp

[
−
(
θ − θ0)

∆θ

)2
]
fα(θ), (E40)

where ∆r = 0.2R, ∆θ = ∆r/L and (r0, θ0) is the position of the base helical vortex.
A three-dimensional field is then created as follows. In the periodic box of axial

extent 2πnpL, three-dimensional components can be represented as combinations of

modes (n, q) of the form v̂
(n,q)
α (r) exp[inθ + iqz/(npL)] + c.c. On the other hand,

the instability modes of the helical vortex system are expected to be of the form
A(r) exp(inφ+ ikzz) or, since φ ≡ θ − z/L,

A(r) exp

[
inθ + i(p− npn)

z

npL

]
.

The two-dimensional field g can thus be transformed to a three-dimensional field of
the above form by setting

v̂(n,q)α (r) = ĝ(n)α (r)δqq0 , q0 ≡ p− npn , (E41)

where δij stands for the Kronecker symbol. The Fourier coefficients are then forced to
satisfy

v̂(−n,−q)α (r) = v̂(n,q)α (r)† (E42)

so that the field v = vrer+ vθeθ+ vzez be indeed real. Finally, v is projected to yield
the divergenceless field u:

u = v −∇Φ , ∇2Φ = ∇ · v. (E43)
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